1
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
2
|
Gunia-Krzyżak A, Popiół J, Słoczyńska K, Żelaszczyk D, Orzeł K, Koczurkiewicz-Adamczyk P, Wójcik-Pszczoła K, Kasza P, Borczuch-Kostańska M, Pękala E. In silico and in vitro evaluation of a safety profile of a cosmetic ingredient: 4-methoxychalcone (4-MC). Toxicol In Vitro 2023; 93:105696. [PMID: 37722549 DOI: 10.1016/j.tiv.2023.105696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Chalcone is an important scaffold within medicinal and cosmetic chemistry. The structure enables multiple modifications which may result in obtaining compounds with desirable bioactivity. One of the chalcone derivatives, 4-methoxychalcone is a known cosmetic ingredient indexed in Cosing database as an antioxidant, bleaching, and skin conditioning substance. We investigated its in silico and in vitro safety profile. In silico study using Derek Nexus showed its potential of skin sensitisation, equivocal nature of chromosome damage in vitro in mammals, but also no mutagenic properties. In vitro research proved its activity as melanogenesis inhibitor in B16F10 cell line at the doses 12.5-3.125 μM. Evaluations performed in various cell lines showed that the cytotoxic doses were 50-25 μM. Tests in Episkin™ proved its ability to penetrate across epidermis and enabled classification of 2% formulation in PEG as non-irritant. In micronucleus tests it showed no genotoxicity. Studies in Cunninghamella echinulata model proved that 4-methoxychalcone was metabolised to less lipophilic products. 4-methoxychalcone showed phototoxic potential, its EC50(+UV) = 3.57 μg/mL, PIF = 10.19 and MPE = 0.428 were comparable to chlorpromazine. Moreover, 4-methoxychalcone showed ecotoxic potential in Microtox® assay with EC50(5 min) = 0.0047 mg/L and EC50(15 min) = 0.0033 mg/L. Although active doses were lower than toxic ones, some potential safety risks were noticed. Especially, due to the phototoxicity potential of 4-methoxychalcone, its use as depigmenting agent should involve avoidance of sunlight and use of appropriate photoprotection.
Collapse
Affiliation(s)
- Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Katarzyna Orzeł
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Patryk Kasza
- Department of Organic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Magda Borczuch-Kostańska
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| |
Collapse
|
3
|
Dadi V, Malla RR, Siragam S. Natural and Synthetic Chalcones: Potential Impact on Breast Cancer. Crit Rev Oncog 2023; 28:27-40. [PMID: 38050979 DOI: 10.1615/critrevoncog.2023049659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chalcones are small molecules, naturally found in fruits and vegetables, and exhibit diverse pharmacological activities. They also possess anticancer activity against different tumors. They can be converted into numerous derivatives by modifying hydrogen moieties, enabling the exploration of their diverse anticancer potentials. The main aims are to provide valuable insights into the recent progress made in utilizing chalcones and their derivatives as agents against breast cancer while delivering their underlying molecular mechanisms of action. This review presents anticancer molecular mechanisms and signaling pathways modulated by chalcones. Furthermore, it helps in the understating of the precise mechanisms of action and specific molecular targets of chalcones and their synthetic derivatives for breast cancer treatment.
Collapse
Affiliation(s)
- Vasudha Dadi
- Department of Pharmaceutical Chemistry, Vignan Institute of Pharmaceutical Technology, Visakhapatnam 530049, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Satyalakshmi Siragam
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Visakhapatnam 530049, India
| |
Collapse
|
4
|
Halim PA, Hassan RA, Mohamed KO, Hassanin SO, Khalil MG, Abdou AM, Osman EO. Synthesis and biological evaluation of halogenated phenoxychalcones and their corresponding pyrazolines as cytotoxic agents in human breast cancer. J Enzyme Inhib Med Chem 2021; 37:189-201. [PMID: 34894967 PMCID: PMC8667918 DOI: 10.1080/14756366.2021.1998023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Novel halogenated phenoxychalcones 2a–f and their corresponding N-acetylpyrazolines 3a–f were synthesised and evaluated for their anticancer activities against breast cancer cell line (MCF-7) and normal breast cell line (MCF-10a), compared with staurosporine. All compounds showed moderate to good cytotoxic activity when compared to control. Compound 2c was the most active, with IC50 = 1.52 µM and selectivity index = 15.24. Also, chalcone 2f showed significant cytotoxic activity with IC50 = 1.87 µM and selectivity index = 11.03. Compound 2c decreased both total mitogen activated protein kinase (p38α MAPK) and phosphorylated enzyme in MCF-7 cells, suggesting its ability to decrease cell proliferation and survival. It also showed the ability to induce ROS in MCF-7 treated cells. Compound 2c exhibited apoptotic behaviour in MCF-7 cells due to cell accumulation in G2/M phase and elevation in late apoptosis 57.78-fold more than control. Docking studies showed that compounds 2c and 2f interact with p38alpha MAPK active sites.
Collapse
Affiliation(s)
- Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Soha O Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona G Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Eman O Osman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Constantinescu T, Lungu CN. Anticancer Activity of Natural and Synthetic Chalcones. Int J Mol Sci 2021; 22:11306. [PMID: 34768736 PMCID: PMC8582663 DOI: 10.3390/ijms222111306] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer is a condition caused by many mechanisms (genetic, immune, oxidation, and inflammatory). Anticancer therapy aims to destroy or stop the growth of cancer cells. Resistance to treatment is theleading cause of the inefficiency of current standard therapies. Targeted therapies are the most effective due to the low number of side effects and low resistance. Among the small molecule natural compounds, flavonoids are of particular interest for theidentification of new anticancer agents. Chalcones are precursors to all flavonoids and have many biological activities. The anticancer activity of chalcones is due to the ability of these compounds to act on many targets. Natural chalcones, such as licochalcones, xanthohumol (XN), panduretin (PA), and loncocarpine, have been extensively studied and modulated. Modification of the basic structure of chalcones in order to obtain compounds with superior cytotoxic properties has been performed by modulating the aromatic residues, replacing aromatic residues with heterocycles, and obtaining hybrid molecules. A huge number of chalcone derivatives with residues such as diaryl ether, sulfonamide, and amine have been obtained, their presence being favorable for anticancer activity. Modification of the amino group in the structure of aminochalconesis always favorable for antitumor activity. This is why hybrid molecules of chalcones with different nitrogen hetercycles in the molecule have been obtained. From these, azoles (imidazole, oxazoles, tetrazoles, thiazoles, 1,2,3-triazoles, and 1,2,4-triazoles) are of particular importance for the identification of new anticancer agents.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Claudiu N. Lungu
- Department of Surgery, Country Emergency Hospital Braila, 810249 Braila, Romania
| |
Collapse
|
6
|
Hao Y, Wei Z, Wang Z, Li G, Yao Y, Dun B. Biotransformation of Flavonoids Improves Antimicrobial and Anti-Breast Cancer Activities In Vitro. Foods 2021; 10:foods10102367. [PMID: 34681416 PMCID: PMC8535490 DOI: 10.3390/foods10102367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Coarse cereals are rich in flavonoids, which are bioactive substances with a wide range of functions. Biotransformation is considered an emerging approach to methylate flavonoids, displaying prominent regio- and stereoselectivity. In the current study, liquiritigenin, naringenin, and hesperidin flavonoids were biotransformed using O-methyltransferases that were heterologously expressed in Saccharomyces cerevisiae BJ5464-NpgA. Nuclear magnetic resonance (NMR) spectroscopy was used together with high-resolution mass spectroscopy analysis to determine the structures of the resulting methylated transformants, and their antimicrobial and antiproliferation activities were also characterized. Among the five methylated flavonoids obtained, 7-methoxy-liquiritigenin had the strongest inhibitory effect on Candida albicans SC5314 (C. albicans SC5314), Staphylococcus aureus ATCC6538 (S. aureus ATCC6538), and Escherichia coli ATCC25922 (E. coli ATCC25922), which increased 7.65-, 1.49-, and 0.54-fold in comparison to the values of their unmethylated counterparts at 200, 250, and 400 μM, respectively. The results suggest that 3′-methoxyhesperetin showed the best antiproliferative activity against MCF-7 cells with IC50 values of 10.45 ± 0.45 µM, which was an increase of more than 14.35-fold compared to that of hesperetin. These results indicate that methylation enhances the antimicrobial activities and antiproliferative effects of flavonoids. The current study provides an experimental basis for further research on flavonoids as well as flavonoid-containing crops in the development of antimicrobial and anti-breast cancer drugs in addition to supplementary and health foods. The biotransformation method is ideal, as it represents a means for the sustainable production of bioactive flavonoids.
Collapse
Affiliation(s)
- Yanpeng Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China; (Y.H.); (Z.W.); (Z.W.); (G.L.); (Y.Y.)
| | - Zuchen Wei
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China; (Y.H.); (Z.W.); (Z.W.); (G.L.); (Y.Y.)
- Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area’s Medicinal Herbs, College of Life Science & Engineering, The Chongqing Engineering, Chongqing Three Gorges University, No. 666 Tianxing Road, Wanzhou District, Chongqing 404000, China
| | - Zhi Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China; (Y.H.); (Z.W.); (Z.W.); (G.L.); (Y.Y.)
| | - Guiying Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China; (Y.H.); (Z.W.); (Z.W.); (G.L.); (Y.Y.)
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China; (Y.H.); (Z.W.); (Z.W.); (G.L.); (Y.Y.)
| | - Baoqing Dun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China; (Y.H.); (Z.W.); (Z.W.); (G.L.); (Y.Y.)
- Correspondence:
| |
Collapse
|
7
|
Microbial Conjugation Studies of Licochalcones and Xanthohumol. Int J Mol Sci 2021; 22:ijms22136893. [PMID: 34206985 PMCID: PMC8268106 DOI: 10.3390/ijms22136893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial conjugation studies of licochalcones (1-4) and xanthohumol (5) were performed by using the fungi Mucor hiemalis and Absidia coerulea. As a result, one new glucosylated metabolite was produced by M. hiemalis whereas four new and three known sulfated metabolites were obtained by transformation with A. coerulea. Chemical structures of all the metabolites were elucidated on the basis of 1D-, 2D-NMR and mass spectroscopic data analyses. These results could contribute to a better understanding of the metabolic fates of licochalcones and xanthohumol in mammalian systems. Although licochalcone A 4'-sulfate (7) showed less cytotoxic activity against human cancer cell lines compared to its substrate licochalcone A, its activity was fairly retained with the IC50 values in the range of 27.35-43.07 μM.
Collapse
|