1
|
Ahmadi M, Kim HL, Park SJ, Jung HJ. Echium amoenum and Rosmarinic Acid Suppress the Growth and Metastasis of Gastric Cancer AGS Cells by Promoting Apoptosis and Inhibiting EMT. Int J Mol Sci 2024; 25:12909. [PMID: 39684626 DOI: 10.3390/ijms252312909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Gastric cancer (GC) ranks as the fifth most prevalent cancer globally. Owing to the absence of early manifest symptoms, it is difficult to diagnose GC until it has metastasized to other organs. Hence, the prevention and treatment of GC have become major concerns for patients. Echium amoenum, a traditional medicinal plant from the Boraginaceae family, exhibits various biological activities. Although recent studies have reported the anticancer properties of E. amoenum, its effects and mechanisms of action on GC cells are not yet fully understood. This study examined the anticancer effects of the ethyl acetate extract of E. amoenum (EAEC) and its main active ingredient, rosmarinic acid (RA), in GC AGS cells. EAEC and RA suppressed AGS cell growth by inducing apoptosis through caspase mediation and inhibited AGS cell metastasis by influencing the expression of crucial epithelial-mesenchymal transition (EMT) biomarkers. Furthermore, the anti-growth and anti-metastatic effects of EAEC and RA on AGS cells involved inactivation of the STAT3, AKT, and ERK1/2 pathways. Additionally, RA notably inhibited the in vivo tumor growth in AGS cells. Overall, these results indicate that EAEC and RA could serve as potential anticancer and anti-metastasis agents for GC.
Collapse
Affiliation(s)
- Mahdieh Ahmadi
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Hong Lae Kim
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - So Jin Park
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
2
|
Pawłowski W, Caban M, Lewandowska U. Cancer Prevention and Treatment with Polyphenols: Type IV Collagenase-Mediated Mechanisms. Cancers (Basel) 2024; 16:3193. [PMID: 39335164 PMCID: PMC11430265 DOI: 10.3390/cancers16183193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Polyphenols are natural compounds found in many plants and their products. Their high structural diversity bestows upon them a range of anti-inflammatory, anti-oxidant, proapoptotic, anti-angiogenic, and anti-metastatic properties, and a growing body of research indicates that a polyphenol-rich diet can inhibit cancer development in humans. Polyphenolic compounds may modulate the expression, secretion, or activity of compounds that play a significant role in carcinogenesis, including type IV collagenases, such as matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), by suppressing cellular signaling pathways such as nuclear factor-kappa B. These enzymes are responsible for the degradation of the extracellular matrix, thus promoting the progression of cancer. This review discusses the current state of knowledge concerning the anti-cancer activity of polyphenols, particularly curcumin, resveratrol, epigallocatechin-3-gallate, genistein, and quercetin, with a specific focus on their anti-invasive and anti-metastatic potential, based on the most recent in vitro and in vivo studies. It appears that polyphenols may be valuable options for the chemoprevention and treatment of cancer via the inhibition of MMP-2 and MMP-9 and the suppression of signaling pathways regulating their expression and activity.
Collapse
Affiliation(s)
| | | | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.P.); (M.C.)
| |
Collapse
|
3
|
Li X, Yu D, Wang Q, Chen Y, Jiang H. Elucidating the molecular mechanisms of pterostilbene against cervical cancer through an integrated bioinformatics and network pharmacology approach. Chem Biol Interact 2024; 396:111058. [PMID: 38761877 DOI: 10.1016/j.cbi.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Pterostilbene (PTE), a natural phenolic compound, has exhibited promising anticancer properties in the preclinical treatment of cervical cancer (CC). This study aims to comprehensively investigate the potential targets and mechanisms underlying PTE's anticancer effects in CC, thereby providing a theoretical foundation for its future clinical application and development. To accomplish this, we employed a range of methodologies, including network pharmacology, bioinformatics, and computer simulation, with specific techniques such as WGCNA, PPI network construction, ROC curve analysis, KM survival analysis, GO functional enrichment, KEGG pathway enrichment, molecular docking, MDS, and single-gene GSEA. Utilizing eight drug target prediction databases, we have identified a total of 532 potential targets for PTE. By combining CC-related genes from the GeneCards disease database with significant genes derived from WGCNA analysis of the GSE63514 dataset, we obtained 7915 unique CC-related genes. By analyzing the intersection of the 7915 CC-related genes and the 2810 genes that impact overall survival time in CC, we identified 690 genes as crucial for CC. Through the use of a Venn diagram, we discovered 36 overlapping targets shared by PTE and CC. We have constructed a PPI network and identified 9 core candidate targets. ROC and KM curve analyses subsequently revealed IL1B, EGFR, IL1A, JUN, MYC, MMP1, MMP3, and ANXA5 as the key targets modulated by PTE in CC. GO and KEGG pathway enrichment analyses indicated significant enrichment of these key targets, primarily in the MAPK and IL-17 signaling pathways. Molecular docking analysis verified the effective binding of PTE to all nine key targets. MDS results showed that the protein-ligand complex between MMP1 and PTE was the most stable among the nine targets. Additionally, GSEA enrichment analysis suggested a potential link between elevated MMP1 expression and the activation of the IL-17 signaling pathway. In conclusion, our study has identified key targets and uncovered the molecular mechanism behind PTE's anticancer activity in CC, establishing a firm theoretical basis for further exploration of PTE's pharmacological effects in CC therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Dequan Yu
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Qiming Wang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Yating Chen
- Department of Clinical Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Hanbing Jiang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
4
|
Prasad M, Tamil Selvan S, Shanmugam R, Murugan R, Fareed M. Analysing the Anticancer Properties of Pterostilbene Through Absorption, Distribution, Metabolism, and Excretion (ADME) and Molecular Docking Studies. Cureus 2024; 16:e58425. [PMID: 38756274 PMCID: PMC11097614 DOI: 10.7759/cureus.58425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Aim The aim of this study is to examine the possible therapeutic effect of pterostilbene (PTS), a chemical present in grapes and blueberries, in the treatment of liver cancer by analysing its interactions with important proteins linked to the wingless/integrated (Wnt) signaling system. Objective Using computational techniques like molecular docking and absorption, distribution, metabolism, and excretion (ADME) studies, this research focuses on examining the pharmacokinetics and molecular interactions of PTS with proteins such as vimentin (Vim), glycogen synthase kinase 3 beta (GSK3-β), epithelial cadherin (E-cadherin), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), c-Jun N-terminal kinase (JNK), and Wnt, all of which are connected to the Wnt signaling pathway in liver cancer. Methods The study includes the synthesis of proteins and ligands, ADME investigations for PTS, and AutoDock Vina molecular docking simulations to evaluate binding affinities and interactions. PTS is obtained from PubChem, while protein structures are obtained from the Protein Data Bank. Results Strong binding affinities between PTS and essential proteins in the Wnt signaling cascade are shown by molecular docking, which also highlights noteworthy hydrogen bonds, hydrophobic interactions, and electrostatic contacts. According to an ADME study, PTS has advantageous pharmacokinetic properties, such as moderate solubility, membrane permeability, and a minimal chance of drug interactions. Conclusion The extensive study highlights PTS's potential as a viable treatment option for liver cancer. The study promotes its investigation in cutting-edge liver cancer therapy approaches and urges more investigation into the molecular mechanisms, underpinning its anticancer properties. This paper sheds important light on the role of natural chemicals in cancer therapy and emphasizes the need for computational methods in drug discovery.
Collapse
Affiliation(s)
- Monisha Prasad
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Silambarasan Tamil Selvan
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Ramadurai Murugan
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Mohammad Fareed
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
5
|
Zhang S, Xu Y, Wang F, Yang L, Luo L, Jiang L. Transcriptomic and Physiological Analysis of the Effects of Exogenous Phloretin and Pterostilbene on Resistance Responses of Stylosanthes against Anthracnose. Int J Mol Sci 2024; 25:2701. [PMID: 38473948 DOI: 10.3390/ijms25052701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Anthracnose caused by Colletotrichum gloeosporioides is a destructive disease of Stylosanthes (stylo). Combination treatment of phloretin and pterostilbene (PP) has been previously shown to effectively inhibit the conidial germination and mycelial growth of C. gloeosporioides in vitro. In this study, the effects of PP treatment on the growth of C. gloeosporioides in vivo and the biocontrol mechanisms were investigated. We found that exogenous PP treatment could limit the growth of C. gloeosporioides and alleviate the damage of anthracnose in stylo. Comparative transcriptome analysis revealed that 565 genes were up-regulated and 239 genes were down-regulated upon PP treatment during the infection by C. gloeosporioides. The differentially expressed genes were mainly related to oxidative stress and chloroplast organization. Further physiological analysis revealed that application of PP after C. gloeosporioides inoculation significantly reduced the accumulation of O2•- level and increased the accumulation of antioxidants (glutathione, ascorbic acid and flavonoids) as well as the enzyme activity of total antioxidant capacity, superoxide dismutase, catalase, glutathione reductase, peroxidase and ascorbate peroxidase. PP also reduced the decline of chlorophyll a + b and increased the content of carotenoid in response to C. gloeosporioides infection. These results suggest that PP treatment alleviates anthracnose by improving antioxidant capacity and reducing the damage of chloroplasts, providing insights into the biocontrol mechanisms of PP on the stylo against anthracnose.
Collapse
Affiliation(s)
- Shizi Zhang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yunfeng Xu
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Fang Wang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Liyun Yang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Lijuan Luo
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Lingyan Jiang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| |
Collapse
|
6
|
Nishiguch Y, Fujiwara-Tani R, Nukaga S, Nishida R, Ikemoto A, Sasaki R, Mori S, Ogata R, Kishi S, Hojo Y, Shinohara H, Sho M, Kuniyasu H. Pterostilbene Induces Apoptosis from Endoplasmic Reticulum Stress Synergistically with Anticancer Drugs That Deposit Iron in Mitochondria. Int J Mol Sci 2024; 25:2611. [PMID: 38473857 DOI: 10.3390/ijms25052611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Anticancer agents are playing an increasing role in the treatment of gastric cancer (GC); however, novel anticancer agents have not been fully developed. Therefore, it is important to investigate compounds that improve sensitivity to the existing anticancer drugs. We have reported that pterostilbene (PTE), a plant stilbene, enhances the antitumor effect of low doses of sunitinib in gastric cancer cells accumulating mitochondrial iron (II) (mtFe) at low doses. In this study, we investigated the relationship between the mtFe deposition and the synergistic effect of PTE and different anticancer drugs. For this study, we used 5-fluorouracil (5FU), cisplatin (CPPD), and lapatinib (LAP), which are frequently used in the treatment of GC, and doxorubicin (DOX), which is known to deposit mtFe. A combination of low-dose PTE and these drugs suppressed the expression of PDZ domain-containing 8 (PDZD8) and increased mtFe accumulation and mitochondrial H2O2. Consequently, reactive oxygen species-associated hypoxia inducible factor-1α activation induced endoplasmic reticulum stress and led to apoptosis, but not ferroptosis. In contrast, 5FU and CDDP did not show the same changes as those observed with PTE and DOX or LAP, and there was no synergistic effect with PTE. These results indicate that the combination of PTE with iron-accumulating anticancer drugs exhibits a strong synergistic effect. These findings would help in developing novel therapeutic strategies for GC. However, further clinical investigations are required.
Collapse
Grants
- 22K16497 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yukiko Nishiguch
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ryoichi Nishida
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Pathology Laboratory, Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Osaka, Japan
| | - Yudai Hojo
- Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan
| | - Hisashi Shinohara
- Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara 634-8522, Nara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| |
Collapse
|
7
|
Li Z, Zhang J, You S, Zhang J, Zhang Y, Akram Z, Sun S. Pterostilbene upregulates MICA/B via the PI3K/AKT signaling pathway to enhance the capability of natural killer cells to kill cervical cancer cells. Exp Cell Res 2024; 435:113933. [PMID: 38296018 DOI: 10.1016/j.yexcr.2024.113933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
Natural killer (NK) cells are triggered by the innate immune response in the tumor microenvironment. The extensive set of stimulating and inhibiting receptors mediates the target recognition of NK cells, and controls the strength of the effector reaction countering specific targeted cells. Yet, lacking major MHC (histocompatibility complex) MICA/B class I chain-related proteins on the membrane of tumor cells results in the failure of NK cell recognition and ability to resist NK cell destruction. Searching databases and molecular docking suggested that in cervical cancer, pterostilbene (3,5-dimethoxy-40-hydroxystilbene; PTS) in Vaccinium corymbosum extract could constrain PI3K/AKT signaling and improving the MICA/B expression. In flow cytometry, MTT assay, viability/cytotoxicity assay, and colony development assays, PTS reduced the development of cervical cancer cells and increased apoptosis. The quantitative real-time PCR (qRT-PCR) and a Western blot indicate that PTS controlled the cytolytic action of NK cells in tumor cells via increasing the MICA/B expression, thus modifying the anti-tumor immune response in cervical cancer.
Collapse
Affiliation(s)
- Zuoping Li
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, Xinjiang, China; Shihezi University College of Chemistry and Chemical Engineering, Shihezi, 832002, Xinjiang, China.
| | - Jiaru Zhang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, Xinjiang, China.
| | - Shiwan You
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, Xinjiang, China.
| | - Jing Zhang
- Shihezi University College of Chemistry and Chemical Engineering, Shihezi, 832002, Xinjiang, China.
| | - Yuling Zhang
- Shihezi University College of Chemistry and Chemical Engineering, Shihezi, 832002, Xinjiang, China.
| | - Zubair Akram
- Shihezi University College of Chemistry and Chemical Engineering, Shihezi, 832002, Xinjiang, China.
| | - Shiguo Sun
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, Xinjiang, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Liu P, Tang W, Xiang K, Li G. Pterostilbene in the treatment of inflammatory and oncological diseases. Front Pharmacol 2024; 14:1323377. [PMID: 38259272 PMCID: PMC10800393 DOI: 10.3389/fphar.2023.1323377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Pterostilbene (PTS), a naturally occurring analog of resveratrol (RSV), has garnered significant attention due to its potential therapeutic effects in treating inflammatory and oncological diseases. This comprehensive review elucidates the pharmacological properties, mechanisms of action, and therapeutic potential of PTS. Various studies indicate that PTS exhibits anti-inflammatory, antioxidant, and antitumour properties, potentially making it a promising candidate for clinical applications. Its influence on regulatory pathways like NF-κB and PI3K/Akt underscores its diverse strategies in addressing diseases. Additionally, PTS showcases a favorable pharmacokinetic profile with better oral bioavailability compared to other stilbenoids, thus enhancing its therapeutic potential. Given these findings, there is an increased interest in incorporating PTS into treatment regimens for inflammatory and cancer-related conditions. However, more extensive clinical trials are imperative to establish its safety and efficacy in diverse patient populations.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Kali Xiang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Guangcai Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
9
|
Tripathi T, Yadav J, Janjua D, Chaudhary A, Joshi U, Senrung A, Chhokar A, Aggarwal N, Bharti AC. Targeting Cervical Cancer Stem Cells by Phytochemicals. Curr Med Chem 2024; 31:5222-5254. [PMID: 38288813 DOI: 10.2174/0109298673281823231222065616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 09/06/2024]
Abstract
Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.
Collapse
Affiliation(s)
- Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Department of Zoology, Daulat Ram College, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
10
|
Rayginia TP, Keerthana CK, Shifana SC, Pellissery MJ, Abhishek A, Anto RJ. Phytochemicals as Potential Lead Molecules against Hepatocellular Carcinoma. Curr Med Chem 2024; 31:5199-5221. [PMID: 38213177 DOI: 10.2174/0109298673275501231213063902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, accounting for 85-90% of liver cancer cases and is a leading cause of cancer-related mortality worldwide. The major risk factors for HCC include hepatitis C and B viral infections, along with chronic liver diseases, such as cirrhosis, fibrosis, and non-alcoholic steatohepatitis associated with metabolic syndrome. Despite the advancements in modern medicine, there is a continuous rise in the annual global incidence rate of HCC, and it is estimated to reach >1 million cases by 2025. Emerging research in phytomedicine and chemotherapy has established the anti-cancer potential of phytochemicals, owing to their diverse biological activities. In this review, we report the major phytochemicals that have been explored in combating hepatocellular carcinoma and possess great potential to be used as an alternative or in conjunction with the existing HCC treatment modalities. An overview of the pre-clinical observations, mechanism of action and molecular targets of some of these phytochemicals is also incorporated.
Collapse
Affiliation(s)
- Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | - Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | | | - Maria Joy Pellissery
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Ajmani Abhishek
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| |
Collapse
|
11
|
Kwon M, Jung HJ. Hovenia dulcis Suppresses the Growth of Huh7-Derived Liver Cancer Stem Cells by Inducing Necroptosis and Apoptosis and Blocking c-MET Signaling. Cells 2023; 13:22. [PMID: 38201226 PMCID: PMC10778038 DOI: 10.3390/cells13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Liver cancer stem cells (LCSCs) contribute to the initiation, metastasis, treatment resistance, and recurrence of hepatocellular carcinoma (HCC). Therefore, exploring potential anticancer agents targeting LCSCs may offer new therapeutic options to overcome HCC treatment failure. Hovenia dulcis Thunberg (HDT), a tree from the buckthorn family found in Asia, exhibits various biological activities, including antifatigue, antidiabetic, neuroprotective, hepatoprotective, and antitumor activities. However, the therapeutic effect of HDT in eliminating LCSCs remains to be confirmed. In this study, we evaluated the inhibitory activity of ethanol, chloroform, and ethyl acetate extracts from HDT branches on the growth of Huh7-derived LCSCs. The ethyl acetate extract of HDT (EAHDT) exhibited the most potent inhibitory activity against the growth of Huh7 LCSCs among the three HDT extracts. EAHDT suppressed the in vitro self-renewal ability of Huh7 LCSCs and reduced tumor growth in vivo using the Huh7 LCSC-transplanted chick embryo chorioallantoic membrane model. Furthermore, EAHDT not only arrested the cell cycle in the G0/G1 phase but also induced receptor-interacting protein kinase 3/mixed-lineage kinase domain-like protein-mediated necroptosis and caspase-dependent apoptosis in Huh7 LCSCs in a concentration-dependent manner. Furthermore, the growth inhibitory effect of EAHDT on Huh7 LCSCs was associated with the downregulation of c-MET-mediated downstream signaling pathways and key cancer stemness markers. Based on these findings, we propose that EAHDT can be used as a new natural drug candidate to prevent and treat HCC by eradicating LCSCs.
Collapse
Affiliation(s)
- Mikyoung Kwon
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea;
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea;
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
12
|
Choowongkomon K, Choengpanya K, Pientong C, Ekalaksananan T, Talawat S, Srathong P, Chuerduangphui J. The Inhibitory Effect of Kerra TM, KS TM, and Minoza TM on Human Papillomavirus Infection and Cervical Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2169. [PMID: 38138272 PMCID: PMC10745032 DOI: 10.3390/medicina59122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Cervical cancer is one of the most common types of frequently found cancers in Thailand. One of the causative agents is the infection of the high-risk human papillomavirus (HPV) type 16 and 18. Traditional medicines are rich sources of bioactive compounds which are a valuable source for the development of novel cancer therapies. In this study, the therapeutic effects of 3 traditional medicines, KerraTM, KSTM, and MinozaTM, were studied on HeLa and CaSki cells. Materials and Methods: The effects of KerraTM, KSTM, and MinozaTM on cancer cells were evaluated through cytotoxicity and cell death assays. The infection assay using HPV-16 pseudovirus was also carried out. Results: All traditional medicines efficiently suppressed cell growths of HeLa and CaSki, with KerraTM being the most potent anticancer agent followed by KSTM and MinozaTM. KerraTM at 158 µg/mL and 261 µg/mL significantly increases the percentage inhibition of the HPV-16 pseudovirus infection in a pre-attachment step in a dose-dependent manner, while KSTM at 261 µg/mL efficiently inhibited viral infection in both pre-attachment and adsorption steps. However, KerraTM, KSTM, and MinozaTM at subtoxic concentrations could not reduce the viral E6 mRNA expressions of HPV-16 and HPV-18. Cell death assay by acridine orange/ethidium bromide showed that KerraTM increased population of dead cells in dose-dependent manner in both CaSki and HeLa. The percentage of secondary necrosis in KerraTM-treated CaSki was higher than that of HeLa cells, while the percentage of late apoptotic cells in HeLa was higher than that of CaSki, indicating that HeLa was more susceptible to KerraTM than CaSki. For KSTM and MinozaTM, these extracts at 250 µg/mL promoted autophagy over cell death. At 500 µg/mL, the percentage of dead cells in KerraTM was higher than that of KSTM and MinozaTM. Conclusions: KerraTM is a potent traditional medicine for promoting cancer cell death. KerraTM is possibly useful in the prevention and treatment of cervical cancer. Further investigation will be carried out to gain a better understanding of the biochemical mechanism and the pharmacological activity underlying this effect.
Collapse
Affiliation(s)
- Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (K.C.); (S.T.)
| | | | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.P.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.P.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sulak Talawat
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (K.C.); (S.T.)
| | - Pussadee Srathong
- Faculty of Nursing, Praboromarajchanok Institute, Nonthaburi 11000, Thailand;
| | | |
Collapse
|
13
|
Ganesh GV, Ramkumar KM. Pterostilbene accelerates wound healing response in diabetic mice through Nrf2 regulation. Mol Immunol 2023; 164:17-27. [PMID: 37926050 DOI: 10.1016/j.molimm.2023.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Pterostilbene (PTS), known for its diverse beneficial effects via Nuclear factor erythroid-2 related factor (Nrf2) activation, holds potential for Diabetic Foot Ulcer (DFU) treatment. However, PTS-mediated Nrf2 regulation in diabetic wounds has yet to be elucidated. We used IC21 macrophage-conditioned media to simulate complex events that can influence the fibroblast phenotype using L929 cells during the wound healing process under a hyperglycemic microenvironment. We found that PTS attenuated fibroblast migration and alpha-smooth muscle actin (α-SMA) levels and hypoxia-inducible factor- 1 alpha (HIF1α). Furthermore, we demonstrated that wounds in diabetic mice characterized by impaired wound closure in a heightened inflammatory milieu, such as the NOD-like receptor P3 (NLRP3) and intercellular adhesion molecule 1 (ICAM1), and deficient Nrf2 response accompanying lowered Akt signaling and heme oxygenase1 (HO1) expression along with the impaired macrophage M2 marker CD206 expression, was rescued by administration of PTS. Such an elicited response was also compared favorably with the standard treatment using Regranex, a commercially available topical formulation for treating DFUs. Our findings suggest that PTS regulates Nrf2 in diabetic wounds, triggering a pro-wound healing response mediated by macrophages. This insight holds the potential for developing targeted therapies to heal chronic wounds, including DFUs.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
14
|
Chang YC, Wu CZ, Cheng CW, Chen JS, Chang LC. Redrawing Urokinase Receptor (uPAR) Signaling with Cancer Driver Genes for Exploring Possible Anti-Cancer Targets and Drugs. Pharmaceuticals (Basel) 2023; 16:1435. [PMID: 37895906 PMCID: PMC10610195 DOI: 10.3390/ph16101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
During tumorigenesis, urokinase (uPA) and uPA receptor (uPAR) play essential roles in mediating pathological progression in many cancers. To understand the crosstalk between the uPA/uPAR signaling and cancer, as well as to decipher their cellular pathways, we proposed to use cancer driver genes to map out the uPAR signaling. In the study, an integrated pharmaceutical bioinformatics approach that combined modulator identification, driver gene ontology networking, protein targets prediction and networking, pathway analysis and uPAR modulator screening platform construction was employed to uncover druggable targets in uPAR signaling for developing a novel anti-cancer modality. Through these works, we found that uPAR signaling interacted with 10 of 21 KEGG cancer pathways, indicating the important role of uPAR in mediating intracellular cancerous signaling. Furthermore, we verified that receptor tyrosine kinases (RTKs) and ribosomal S6 kinases (RSKs) could serve as signal hubs to relay uPAR-mediated cellular functions on cancer hallmarks such as angiogenesis, proliferation, migration and metastasis. Moreover, we established an in silico virtual screening platform and a uPAR-driver gene pair rule for identifying potential uPAR modulators to combat cancer. Altogether, our results not only elucidated the complex networking between uPAR modulation and cancer but also provided a paved way for developing new chemical entities and/or re-positioning clinically used drugs against cancer.
Collapse
Affiliation(s)
- Yu-Ching Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114201, Taiwan;
| | - Chung-Ze Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114201, Taiwan
| | - Jin-Shuen Chen
- Department of Education and Research, Kaohsiung Veteran General Hospital, Kaohsiung City 813414, Taiwan
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114202, Taiwan
| | - Li-Chien Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114201, Taiwan;
- School of Pharmacy, National Defense Medical Center, Taipei City 114201, Taiwan
| |
Collapse
|
15
|
Duta-Bratu CG, Nitulescu GM, Mihai DP, Olaru OT. Resveratrol and Other Natural Oligomeric Stilbenoid Compounds and Their Therapeutic Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2935. [PMID: 37631147 PMCID: PMC10459741 DOI: 10.3390/plants12162935] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
The use of natural compounds as an alternative to synthetic molecules has become a significant subject of interest in recent decades. Stilbenoids are a group of phenolic compounds found in many plant species and they have recently gained the focus of a multitude of studies in medicine and chemistry, resveratrol being the most representative molecule. In this review, we focused on the research that illustrates the therapeutic potential of this class of natural molecules considering various diseases with higher incidence rates. PubChem database was searched for bioactivities of natural stilbenoids, while several keywords (i.e., "stilbenoids", "stilbenoid anticancer") were used to query PubMed database for relevant studies. The diversity and the simplicity of stilbenes' chemical structures together with the numerous biological sources are key elements that can simplify both the isolation of these compounds and the drug design of novel bioactive molecules. Resveratrol and other related compounds are heterogeneously distributed in plants and are mainly found in grapes and wine. Natural stilbenes were shown to possess a wide range of biological activities, such as antioxidant, anti-inflammatory, antihyperglycemic, cardioprotective, neuroprotective, and antineoplastic properties. While resveratrol is widely investigated for its benefits in various disorders, further studies are warranted to properly harness the therapeutic potential of less popular stilbenoid compounds.
Collapse
Affiliation(s)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania (O.T.O.)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania (O.T.O.)
| | | |
Collapse
|
16
|
Gołąbek-Grenda A, Kaczmarek M, Juzwa W, Olejnik A. Natural resveratrol analogs differentially target endometriotic cells into apoptosis pathways. Sci Rep 2023; 13:11468. [PMID: 37454164 PMCID: PMC10349804 DOI: 10.1038/s41598-023-38692-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
The specific characteristics of endometriotic cells are their ability to evade the apoptotic machinery and abnormal response to apoptotic stimuli. Natural-originated compounds may constitute a beneficial strategy in apoptosis modulation in endometriosis. We investigated and compared the potency of natural resveratrol analogs, including piceatannol, polydatin, and pterostilbene, in targeting cell death pathways, including apoptosis-related morphologic and biochemical processes, alongside the modulation of the critical genes expression. Upon resveratrol and pterostilbene treatment, a significant reduction of endometriotic cell viability and an increased apoptotic proportion of cells were noted. The lower antiproliferative potential was found for piceatannol and polydatin. Endometrial stromal T HESC cells were significantly more resistant than endometriotic epithelial 12Z cells to the cytotoxic activity of all analyzed compounds. They differentially affected endometriotic cell viability, cell cycle, anti- and proapoptotic genes regulation, caspases expression and enzymatic activity, and DNA fragmentation. Pterostilbene-mediated endometriotic cell apoptosis modulation was confirmed to be most effective but without evident caspase 3 upregulation. Our study provides valuable insight into the apoptogenic activity of resveratrol and its natural analogs in endometriotic cells. Data obtained revealed the highest therapeutic potential of pterostilbene by effectively targeting cell death determinants in endometriosis, strengthening its optimization in further extensive research.
Collapse
Affiliation(s)
- Agata Gołąbek-Grenda
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627, Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866, Poznan, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866, Poznan, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627, Poznan, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627, Poznan, Poland.
| |
Collapse
|
17
|
Li W, Xu X. Advances in mitophagy and mitochondrial apoptosis pathway-related drugs in glioblastoma treatment. Front Pharmacol 2023; 14:1211719. [PMID: 37456742 PMCID: PMC10347406 DOI: 10.3389/fphar.2023.1211719] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). It is a leading cause of death among patients with intracranial malignant tumors. GBM exhibits intra- and inter-tumor heterogeneity, leading to drug resistance and eventual tumor recurrence. Conventional treatments for GBM include maximum surgical resection of glioma tissue, temozolomide administration, and radiotherapy, but these methods do not effectively halt cancer progression. Therefore, development of novel methods for the treatment of GBM and identification of new therapeutic targets are urgently required. In recent years, studies have shown that drugs related to mitophagy and mitochondrial apoptosis pathways can promote the death of glioblastoma cells by inducing mitochondrial damage, impairing adenosine triphosphate (ATP) synthesis, and depleting large amounts of ATP. Some studies have also shown that modern nano-drug delivery technology targeting mitochondria can achieve better drug release and deeper tissue penetration, suggesting that mitochondria could be a new target for intervention and therapy. The combination of drugs targeting mitochondrial apoptosis and autophagy pathways with nanotechnology is a promising novel approach for treating GBM.This article reviews the current status of drug therapy for GBM, drugs targeting mitophagy and mitochondrial apoptosis pathways, the potential of mitochondria as a new target for GBM treatment, the latest developments pertaining to GBM treatment, and promising directions for future research.
Collapse
|
18
|
Surien O, Masre SF, Basri DF, Ghazali AR. Potential Chemopreventive Role of Pterostilbene in Its Modulation of the Apoptosis Pathway. Int J Mol Sci 2023; 24:ijms24119707. [PMID: 37298657 DOI: 10.3390/ijms24119707] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/08/2023] [Accepted: 04/21/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer incidence keeps increasing every year around the world and is one of the leading causes of death worldwide. Cancer has imposed a major burden on the human population, including the deterioration of physical and mental health as well as economic or financial loss among cancer patients. Conventional cancer treatments including chemotherapy, surgery, and radiotherapy have improved the mortality rate. However, conventional treatments have many challenges; for example, drug resistance, side effects, and cancer recurrence. Chemoprevention is one of the promising interventions to reduce the burden of cancer together with cancer treatments and early detection. Pterostilbene is a natural chemopreventive compound with various pharmacological properties such as anti-oxidant, anti-proliferative, and anti-inflammatory properties. Moreover, pterostilbene, due to its potential chemopreventive effect on inducing apoptosis in eliminating the mutated cells or preventing the progression of premalignant cells to cancerous cells, should be explored as a chemopreventive agent. Hence, in the review, we discuss the role of pterostilbene as a chemopreventive agent against various types of cancer via its modulation of the apoptosis pathway at the molecular levels.
Collapse
Affiliation(s)
- Omchit Surien
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Siti Fathiah Masre
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Dayang Fredalina Basri
- Center for Diagnostic, Therapeutic & Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Ahmad Rohi Ghazali
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| |
Collapse
|
19
|
The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021680. [PMID: 36675194 PMCID: PMC9863215 DOI: 10.3390/ijms24021680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.
Collapse
|
20
|
Resveratrol against Cervical Cancer: Evidence from In Vitro and In Vivo Studies. Nutrients 2022; 14:nu14245273. [PMID: 36558430 PMCID: PMC9787601 DOI: 10.3390/nu14245273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer affects many women worldwide, with more than 500,000 cases diagnosed and approximately 300,000 deaths each year. Resveratrol is a natural substance of the class of phytoalexins with a basic structure of stilbenes and has recently drawn scientific attention due to its anticancer properties. The purpose of this review is to examine the effectiveness of resveratrol against cervical cancer. All available in vitro and in vivo studies on cervical cancer were critically reviewed. Many studies utilizing cervical cancer cells in culture reported a reduction in proliferation, cell cycle arrest, and induction of apoptosis. Apart from apoptosis, induction of autophagy was seen in some studies. Importantly, many studies have shown a reduction in the HPV oncoproteins E6 and E7 and increased levels of the tumor suppressor p53 with resveratrol treatment. A few studies examined the effects of resveratrol administration in mice ectopic-xenografted with cervical cancer cells showing reduced tumor volume and weight. Overall, the scientific data show that resveratrol has the ability to target/inhibit certain signaling molecules (EGFR, VEGFR, PKC, JNK, ERK, NF-kB, and STAT3) involved in cervical cancer cell proliferation and survival. Further in vivo experiments and clinical studies are required to better understand the potential of resveratrol against cervical cancer.
Collapse
|
21
|
Sun R, Zheng Q. AKT/foxo3a signal pathway mediates the protective mechanism of resveratrol on renal interstitial fibrosis and oxidative stress in rats with unilateral ureteral obstruction. Am J Transl Res 2022; 14:1788-1795. [PMID: 35422955 PMCID: PMC8991137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore whether protein kinase B (serine/threonrine kinase, AKT)/forkhead box protein O3a (foxo3a) pathway mediates the protective mechanism of resveratrol (RSV) on renal interstitial fibrosis (RIF) and oxidative stress. METHODS Sprague-Dawley (SD) rats were grouped into Sham group, unilateral ureteral obstruction (UUO) group and UUO + RSV group. HE staining was used to test the pathological damage of RIF intervened by RSV, biochemical analyzer was used to measure serum renal injury indexes (creatinine, Cr, blood urea nitrogen, Bun), and enzyme-linked immunosorbent assay (ELISA) was used to detect oxidative stress indexes (malondialdehyde, MDA; glutathione, GSH; superoxide dismutase, SOD). AKT/FoxO3a signaling pathway markers and renal interstitial indexes were measured by western blot analysis. RESULTS Compared with Sham group, HE staining in UUO group showed significant RIF pathological damage; Cr and Bun indexes were increased, and AKT/FoxO3a signal pathway was activated, as indicated by increased p-AKT/AKT and p-FoxO3a/FoxO3a; TGF-β1 and α-SMA protein levels in fibrosis indexes were increased, while E-cadherin decreased; MDA was increased, GSH and SOD were decreased in oxidative stress indexes, while those in UUO + RSV group were improved. CONCLUSION AKT/foxo3a signaling pathway mediates the protective mechanism of RSV on RIF and oxidative stress in UUO rats, and RSV can improve RIF and oxidative stress in UUO rats by inhibiting AKT/foxo3a signaling pathway.
Collapse
Affiliation(s)
- Rongrong Sun
- Department of Nephrology, The First Affiliated Hospital of Hainan Medical CollegeHaikou 570102, Hainan Province, China
| | - Qu Zheng
- Liaoning University of Traditional Chinese Medicine, Center for Post-doctoral StudiesShenyang 110032, Liaoning Province, China
| |
Collapse
|
22
|
Li X, Bian L, Zhao X, He D, Liu G, Tang DW, Li Z, Wu J. Nanoparticles capable of managing hypoglycemia and preventing myocardial ischemia‐reperfusion injury. J Appl Polym Sci 2022. [DOI: 10.1002/app.51758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaofeng Li
- Cardiothoracic and Great Vascular Surgery Xianyang First People's Hospital Xianyang China
| | - Ligong Bian
- College of Clinical Medical Kunming Medical University Kunming China
| | - Xi Zhao
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Dan He
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Guohua Liu
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Di Wei Tang
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Zhiqin Li
- Cardiothoracic and Great Vascular Surgery Xianyang First People's Hospital Xianyang China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| |
Collapse
|
23
|
Sodium Butyrate Ameliorates Oxidative Stress-Induced Intestinal Epithelium Barrier Injury and Mitochondrial Damage through AMPK-Mitophagy Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3745135. [PMID: 35132348 PMCID: PMC8817854 DOI: 10.1155/2022/3745135] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Sodium butyrate has gained increasing attention for its vast beneficial effects. However, whether sodium butyrate could alleviate oxidative stress-induced intestinal dysfunction and mitochondrial damage of piglets and its underlying mechanism remains unclear. The present study used a hydrogen peroxide- (H2O2-) induced oxidative stress model to study whether sodium butyrate could alleviate oxidative stress, intestinal epithelium injury, and mitochondrial dysfunction of porcine intestinal epithelial cells (IPEC-J2) in AMPK-mitophagy-dependent pathway. The results indicated that sodium butyrate alleviated the H2O2-induced oxidative stress, decreased the level of reactive oxygen species (ROS), increased mitochondrial membrane potential (MMP), mitochondrial DNA (mtDNA), and mRNA expression of genes related to mitochondrial function, and inhibited the release of mitochondrial cytochrome c (Cyt c). Sodium butyrate reduced the protein expression of recombinant NLR family, pyrin domain-containing protein 3 (NLRP3) and fluorescein isothiocyanate dextran 4 kDa (FD4) permeability and increased transepithelial resistance (TER) and the protein expression of tight junction. Sodium butyrate increased the expression of light-chain-associated protein B (LC3B) and Beclin-1, reduced the expression of P62, and enhanced mitophagy. However, the use of AMPK inhibitor or mitophagy inhibitor weakened the protective effect of sodium butyrate on mitochondrial function and intestinal epithelium barrier function and suppressed the induction effect of sodium butyrate on mitophagy. In addition, we also found that after interference with AMPKα, the protective effect of sodium butyrate on IPEC-J2 cells treated with H2O2 was suppressed, indicating that AMPKα is necessary for sodium butyrate to exert its protective effect. In summary, these results revealed that sodium butyrate induced mitophagy by activating AMPK, thereby alleviating oxidative stress, intestinal epithelium barrier injury, and mitochondrial dysfunction induced by H2O2.
Collapse
|
24
|
Fu M, Pei Y, Lu F, Jiang H, Bi Y, Cheng J, Qin J. Identification of Potential Hub Genes and miRNA-mRNA Pairs Related to the Progression and Prognosis of Cervical Cancer Through Integrated Bioinformatics Analysis. Front Genet 2022; 12:775006. [PMID: 35003215 PMCID: PMC8727538 DOI: 10.3389/fgene.2021.775006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
In recent years, the incidence and mortality of cervical cancer have increased worldwide. At the same time, increasing data have confirmed that miRNA-mRNA plays a positive or negative regulatory role in many cancers. This study attempted to screen effective miRNA-mRNA in the progression of cervical cancer, and to study the mechanism of miRNA-mRNA in the progression of cervical cancer. The expression profile data of GSE7410, GSE 63514, GSE 86100 and TCGA-CESC were downloaded, and 34 overlapping differentially expressed genes (22 up-regulated and 12 down-regulated) and 166 miRNAs (74 down-regulated and 92 up-regulated) were screened through limma package. Then, miR-197-3p/TYMS pairs were obtained by PPI, functional enrichment, Kaplan-Meier plotter analysis, Cox univariate and multivariate analysis, risk modeling, WGCNA, qPCR and dual-luciferase experiments. The results showed that TYMS was an independent prognostic factor of cervical cancer, and its expression level was negatively correlated with cervical cancer tissue grade (TMN), tumor grade, age, microsatellite stability and tumor mutation load, and positively correlated with methyl expression in DNMT1, DNMT2, DNMT3A and DNMT3B. Functional experiments showed that TYMS knockout could promote the proliferation, migration and invasion of HeLa cells and reduce apoptosis. Overexpression of TYMS showed the opposite trend, miR-197-3p was negatively correlated with the expression of TYMS. MiR-197-3p inhibitor reversed the effect of si-TYMS on the proliferation of HeLa cells. In conclusion, these results reveal that TYMS plays a very important role in the prognosis and progression of cervical cancer, and has the potential to be thought of as cervical cancer biomarkers. At the same time, miR-197-3p/TYMS axis can regulate the deterioration of cervical cancer cells, which lays a foundation for the molecular diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Mingxu Fu
- Department of Obstetrics and Gynecology, Shanghai Fourth People 's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongyan Pei
- School of Medicine and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fang Lu
- Department of Obstetrics and Gynecology, Shanghai Fourth People 's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huici Jiang
- Department of Obstetrics and Gynecology, Shanghai Fourth People 's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingying Bi
- Department of Obstetrics and Gynecology, Shanghai Fourth People 's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajing Cheng
- Department of Obstetrics and Gynecology, Shanghai Fourth People 's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinlong Qin
- Department of Obstetrics and Gynecology, Shanghai Fourth People 's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Guo J, Wang J, Guo R, Shao H, Guo L. Pterostilbene protects the optic nerves and retina in a murine model of experimental autoimmune encephalomyelitis via activation of SIRT1 signaling. Neuroscience 2022; 487:35-46. [DOI: 10.1016/j.neuroscience.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
|
26
|
Cui M, Lu A, Li J, Liu J, Fang Y, Pei T, Zhong X, Wei Y, Kong Y, Qiu W, Hu Y, Yang J, Chen X, Martin C, Zhao Q. Two types of O-methyltransferase are involved in biosynthesis of anticancer methoxylated 4'-deoxyflavones in Scutellaria baicalensis Georgi. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:129-142. [PMID: 34490975 PMCID: PMC8710825 DOI: 10.1111/pbi.13700] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 05/05/2023]
Abstract
The medicinal plant Scutellaria baicalensis Georgi is rich in specialized 4'-deoxyflavones, which are reported to have many health-promoting properties. We assayed Scutellaria flavones with different methoxyl groups on human cancer cell lines and found that polymethoxylated 4'-deoxyflavones, like skullcapflavone I and tenaxin I have stronger ability to induce apoptosis compared to unmethylated baicalein, showing that methoxylation enhances bioactivity as well as the physical properties of specialized flavones, while having no side-effects on healthy cells. We investigated the formation of methoxylated flavones and found that two O-methyltransferase (OMT) families are active in the roots of S. baicalensis. The Type II OMTs, SbPFOMT2 and SbPFOMT5, decorate one of two adjacent hydroxyl groups on flavones and are responsible for methylation on the C6, 8 and 3'-hydroxyl positions, to form oroxylin A, tenaxin II and chrysoeriol respectively. The Type I OMTs, SbFOMT3, SbFOMT5 and SbFOMT6 account mainly for C7-methoxylation of flavones, but SbFOMT5 can also methylate baicalein on its C5 and C6-hydroxyl positions. The dimethoxylated flavone, skullcapflavone I (found naturally in roots of S. baicalensis) can be produced in yeast by co-expressing SbPFOMT5 plus SbFOMT6 when the appropriately hydroxylated 4'-deoxyflavone substrates are supplied in the medium. Co-expression of SbPFOMT5 plus SbFOMT5 in yeast produced tenaxin I, also found in Scutellaria roots. This work showed that both type I and type II OMT enzymes are involved in biosynthesis of methoxylated flavones in S. baicalensis.
Collapse
Affiliation(s)
- Meng‐Ying Cui
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - An‐Rui Lu
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Jian‐Xu Li
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Jie Liu
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Yu‐Min Fang
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Tian‐Lin Pei
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Yu‐Kun Wei
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Wen‐Qing Qiu
- Key Laboratory of Metabolism and Molecular MedicineDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yong‐Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Xiao‐Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Cathie Martin
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- John Innes CentreNorwichUK
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
27
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
28
|
The Natural Pigment Violacein Potentially Suppresses the Proliferation and Stemness of Hepatocellular Carcinoma Cells In Vitro. Int J Mol Sci 2021; 22:ijms221910731. [PMID: 34639072 PMCID: PMC8509727 DOI: 10.3390/ijms221910731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant type of primary liver cancer with high incidence and mortality, worldwide. A major challenge in the treatment of HCC is chemotherapeutic resistance. It is therefore necessary to develop novel anticancer drugs for suppressing the growth of HCC cells and overcoming drug resistance for improving the treatment of HCC. Violacein is a deep violet-colored indole derivative that is produced by several bacterial strains, including Chromobacterium violaceum, and it possesses numerous pharmacological properties, including antitumor activity. However, the therapeutic effects of violacein and the mechanism underlying its antitumor effect against HCC remain to be elucidated. This study is the first to demonstrate that violacein inhibits the proliferation and stemness of Huh7 and Hep3B HCC cells. The antiproliferative effect of violacein was attributed to cell cycle arrest at the sub-G1 phase and the induction of apoptotic cell death. Violacein induced nuclear condensation, dissipated mitochondrial membrane potential (MMP), increased generation of reactive oxygen species (ROS), activated the caspase cascade, and upregulated p53 and p21. The anticancer effect of violacein on HCC cells was also associated with the downregulation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2 signaling. Violacein not only suppressed the proliferation and formation of tumorspheres of Huh7 and Hep3B cancer stem-like cells but also reduced the expression of key markers of cancer stemness, including CD133, Sox2, Oct4, and Nanog, by inhibiting the signal transducer and activator of transcription 3 (STAT3)/AKT/ERK pathways. These results suggest the therapeutic potential of violacein in effectively suppressing HCC by targeting the proliferation and stemness of HCC cells.
Collapse
|
29
|
Ganguly S, Arora I, Tollefsbol TO. Impact of Stilbenes as Epigenetic Modulators of Breast Cancer Risk and Associated Biomarkers. Int J Mol Sci 2021; 22:ijms221810033. [PMID: 34576196 PMCID: PMC8472542 DOI: 10.3390/ijms221810033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
With the recent advancement of genetic screening for testing susceptibility to mammary oncogenesis in women, the relevance of the gene−environment interaction has become progressively apparent in the context of aberrant gene expressions. Fetal exposure to external stressors, hormones, and nutrients, along with the inherited genome, impact its traits, including cancer susceptibility. Currently, there is increasing interest in the role of epigenetic biomarkers such as genomic methylation signatures, plasma microRNAs, and alterations in cell-signaling pathways in the diagnosis and primary prevention of breast cancer, as well as its prognosis. Polyphenols like natural stilbenes have been shown to be effective in chemoprevention by exerting cytotoxic effects that can stall cell proliferation. Besides possessing antioxidant properties against the DNA-damaging effects of reactive oxygen species, stilbenes have also been observed to modulate cell-signaling pathways. With the increasing trend of early-life screening for hereditary breast cancer risks, the potency of different phytochemicals in harnessing the epigenetic biomarkers of breast cancer risk demand more investigation. This review will explore means of exploiting the abilities of stilbenes in altering the underlying factors that influence breast cancer risk, as well as the appearance of associated biomarkers.
Collapse
Affiliation(s)
- Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Cell Senescence Culture Facility, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573
| |
Collapse
|
30
|
The Involvement of Natural Polyphenols in the Chemoprevention of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168812. [PMID: 34445518 PMCID: PMC8396230 DOI: 10.3390/ijms22168812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
From all types of cancer, cervical cancer manages to be in top four most frequent types, with a 6.5% rate of occurrence. The infectious vector that induces the disease, the high-risk Human papillomavirus (HPV), which is a sexually transmitted virus, is capable of transforming the host cell by modulating some of the principal signaling pathways responsible for cell cycle arrest, proliferation, and survival. Fortunately, like other cancer types, cervical cancer can be treated by chirurgical interventions or chemoradiotherapy, but these methods are not exactly the lucky clover of modern medicine because of the adverse effects they have. That is the reason why in the last years the emphasis has been on alternative medicine, more specifically on phytochemicals, as a substantial number of studies showed that diet contributes to cancer prevention and treatment. All these studies are trying to find new chemopreventive agents with less toxicity but high effectiveness both in vitro and in vivo. The aim of this review is to evaluate the literature in order to underline the advantages and disadvantages of polyphenols, a class of dietary compounds, as chemopreventive and chemotherapeutic agents. This review also aims to present polyphenols from different perspectives, starting with mechanisms of action and ending with their toxicity. The bigger picture illustrates that polyphenols have great potential in cervical cancer prevention, with strong effects on gene modulation.
Collapse
|
31
|
Enhancement of Anticancer Potential of Pterostilbene Derivative by Chalcone Hybridization. Molecules 2021; 26:molecules26164840. [PMID: 34443427 PMCID: PMC8401670 DOI: 10.3390/molecules26164840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Pterostilbene, a natural metabolite of resveratrol, has been indicated as a potent anticancer molecule. Recently, several pterostilbene derivatives have been reported to exhibit better anticancer activities than that of the parent pterostilbene molecule. In the present study, a series of pterostilbene derivatives were designed and synthesized by the hybridization of pterostilbene, chalcone, and cinnamic acid. The cytotoxic effect of these hybrid molecules was determined using two oral cancer cell lines, HSC-3 and OECM-1. (E)-3-(2-((E)-4-Hydroxystyryl)-4,6-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (4d), with IC50 of 16.38 and 18.06 μM against OECM-1 and HSC-3, respectively, was selected for further anticancer mechanism studies. Results indicated that compound 4d effectively inhibited cell proliferation and induced G2/M cell cycle arrest via modulating p21, cyclin B1, and cyclin A2. Compound 4d ultimately induced cell apoptosis by reducing the expression of Bcl-2 and surviving. In addition, cleavage of PARP and caspase-3 were enhanced following the treatment of compound 4d with increased dose. To conclude, a number of pterostilbene derivatives were discovered to possess potent anticancer potentials. Among them, compound 4d was the most active, more active than the parent pterostilbene.
Collapse
|
32
|
Zhang Y, Li Y, Sun C, Chen X, Han L, Wang T, Liu J, Chen X, Zhao D. Effect of Pterostilbene, a Natural Derivative of Resveratrol, in the Treatment of Colorectal Cancer through Top1/Tdp1-Mediated DNA Repair Pathway. Cancers (Basel) 2021; 13:4002. [PMID: 34439157 PMCID: PMC8391236 DOI: 10.3390/cancers13164002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Topoisomerase 1 (Top1) inhibitor is an effective anticancer drug, but several factors limit its clinical application such as drug inactivation, tyrosyl-DNA phosphodiesterase 1 (Tdp1)-mediated tumor drug resistance, and its toxicity. Our previous study identified pterostilbene (PTE) and resveratrol (RE) to suppress these two proteins by binding to their active center. PTE and RE could inhibit the proliferation of various colorectal cancer cells, induce cell apoptosis, and make cell cycle stay in G2/M phase in vitro. PTE and RE could decrease Top1 and Tdp1 contents and mRNA expression in wild-type, constructed Tdp1 overexpressing CL187, Top1- or Tdp1- silenced CL187 cell lines. PTE exhibited excellent antitumor activity in subcutaneous CL187 transplantation model (TGI = 79.14 ± 2.85%, 200 mg/kg, i.p.) and orthotopic transplantation model (TGI = 76.57 ± 6.34%, 100 mg/kg, i.p.; TGI = 72.79 ± 4.06%, 500 mg/kg, i.g.) without significant toxicity. PTE had no significant inhibitory effect on non-tumor cell proliferation in vitro and would not induce damage to liver, kidney, and other major organs. Overall, PTE and RE can inhibit the activity of Top1 enzyme and inhibit the DNA damage repair pathway mediated by Top1/Tdp1, and can effectively inhibit colorectal cancer development with low toxicity, thus they have great potential to be developed into a new generation of anti-tumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Y.Z.); (Y.L.); (C.S.); (X.C.); (L.H.); (T.W.); (J.L.)
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Y.Z.); (Y.L.); (C.S.); (X.C.); (L.H.); (T.W.); (J.L.)
| |
Collapse
|
33
|
Targeting cancer stem cells by nutraceuticals for cancer therapy. Semin Cancer Biol 2021; 85:234-245. [PMID: 34273521 DOI: 10.1016/j.semcancer.2021.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence has demonstrated that cancer stem cells (CSCs) play an essential role in tumor progression and reoccurrence and drug resistance. Multiple signaling pathways have been revealed to be critically participated in CSC development and maintenance. Emerging evidence indicates that numerous chemopreventive compounds, also known as nutraceuticals, could eliminate CSCs in part via regulating several signaling pathways. Therefore, in this review, we will describe the some natural chemopreventive agents that target CSCs in a variety of human malignancies, including soy isoflavone, curcumin, resveratrol, tea polyphenols, sulforaphane, quercetin, indole-3-carbinol, 3,3'-diindolylmethane, withaferin A, apigenin, etc. Moreover, we discuss that eliminating CSCs by nutraceuticals might be a promising strategy for treating human cancer via overcoming drug resistance and reducing tumor reoccurrence.
Collapse
|
34
|
Ma J, Yang L, Feng H, Zheng L, Meng H, Li X. CCT6A may act as a potential biomarker reflecting tumor size, lymphatic metastasis, FIGO stage, and prognosis in cervical cancer patients. J Clin Lab Anal 2021; 35:e23793. [PMID: 34196992 PMCID: PMC8373327 DOI: 10.1002/jcla.23793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Chaperonin-containing tailless complex polypeptide subunit 6A (CCT6A) is a critical regulator and newly identified clinical biomarker of several cancers, while its correlation with the clinical characteristics and prognosis of cervical cancer patients is unclear. Therefore, this study aimed to explore this issue. METHODS Chaperonin-containing tailless complex polypeptide subunit 6A expression in tumor and tumor-adjacent tissues from 198 cervical cancer patients who underwent resection were detected by immunohistochemistry assay and reverse transcription-quantitative polymerase chain reaction. Besides, the clinicopathological features and survival data of cervical cancer patients were collected. RESULTS Chaperonin-containing tailless complex polypeptide subunit 6A protein and mRNA levels were both increased in tumor tissues compared with tumor-adjacent tissues (both p < 0.001). Receiver operating characteristic curves showed that CCT6A protein (AUC: 0.774, 95% CI: 0.729-0.819) and mRNA levels (AUC: 0.904, 95% CI: 0.874-0.934) well discriminated tumor tissues from tumor-adjacent tissues. Besides, correlation analyses found that CCT6A protein and mRNA levels were positively correlated with lymph node metastasis and FIGO stage (all p < 0.05), apart from which CCT6A mRNA level was also positively associated with tumor size (p = 0.032). In addition, CCT6A protein and mRNA levels were negatively correlated with accumulating disease-free survival (both p < 0.05); meanwhile CCT6A mRNA level was negatively associated with accumulating overall survival as well (p = 0.010). CONCLUSION Chaperonin-containing tailless complex polypeptide subunit 6A is elevated in tumor tissues, and its high expression associates with larger tumor size, lymph node metastasis, higher FIGO stage, and worse prognosis in cervical cancer patients.
Collapse
Affiliation(s)
- Jiancai Ma
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| | - Liping Yang
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| | - Haiqin Feng
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| | - Lulu Zheng
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| | - Huifang Meng
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| | - Xuefei Li
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| |
Collapse
|
35
|
Zou Y, Wang X, Bi D, Fu J, Han J, Guo Y, Feng L, Han M. Pterostilbene nanoparticles with small particle size show excellent anti-breast cancer activity in vitroand in vivo. NANOTECHNOLOGY 2021; 32:325102. [PMID: 33946061 DOI: 10.1088/1361-6528/abfdec] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Pterostilbene (PTE) is known as resveratrol of the next generation and it has attracted extensive attention in recent years. PTE can inhibit the growth of a variety of tumor cells. To overcome the problem of insolubility, PTE was loaded into nanoparticles (NPs) by anti-solvent precipitation technique using soybean lecithin (SPC) and D-α-tocopheryl polyethylene glycol succinate (TPGS) as stabilizers. The obtained PTE-NPs had an average particle size of 71.0 nm, a polydispersity index (PDI) value of 0.258, and a high zeta potential of -40.8 mV. PTE-NPs can maintain particle size stability in various physiological media. The entrapment efficiency of PTE-NPs was 98.24%. And the apparently water solubility of PTE-NPs was about 53 times higher than the solubility of PTE (54.41μg ml-1v-1s-1. 2.89 mg ml-1). M-1T-1T-1assay showed that the antitumor activity of PTE-NPs on 4T1 breast cancer cells, MCF-7 breast cancer cells and Hela cervical cancer cells was significantly increased by 4, 6 and 8 times than that of free PTE, respectively.In vivostudies have shown that PTE-NPs has a certain dose dependence. When injected intraperitoneally, PTE-NPs showed a similar therapeutic effect as paclitaxel injection (TIR was 57.53% versus 57.23%) against 4T1 tumor-bearing mice. This should be due to the improved bioavailability of the drug caused by nano-drug delivery system (nano-DDS). These results indicate that PTE-NPs may be a clinically promising anti-tumor drug for breast cancer treatment.
Collapse
Affiliation(s)
- Yuan Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Dongdong Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jianwei Han
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Li Feng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| |
Collapse
|
36
|
Pterostilbene in Cancer Therapy. Antioxidants (Basel) 2021; 10:antiox10030492. [PMID: 33801098 PMCID: PMC8004113 DOI: 10.3390/antiox10030492] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Natural polyphenols are organic chemicals which contain phenol units in their structures and possess antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Pterostilbene (3,5-dimethoxy-4′-hydroxystilbene; PT) is a phytoalexin originally isolated from the heartwood of red sandalwood. As recently reported by our group, PT was shown to be effective in the treatment of melanoma. Counterintuitively, PT is not effective (cytotoxic) against melanoma in vitro, and only under in vivo conditions does PT display its anticancer activity. This study elucidated that PT can be effective against melanoma through the inhibition of adrenocorticotropic hormone production in the brain of a mouse, which weakens the Nrf2-dependent antioxidant defenses of melanoma and also pancreatic cancers. This results in both the inhibition of tumor growth and sensitization of the tumor to oxidative stress. Moreover, PT can promote cancer cell death via a mechanism involving lysosomal membrane permeabilization. Different grades of susceptibility were observed among the different cancer cells depending on their lysosomal heat shock protein 70 content, a known stabilizer of lysosomal membranes. In addition, the safety of PT administered i.v. has been evaluated in mice. PT was found to be pharmacologically safe because it showed no organ-specific or systemic toxicity (including tissue histopathologic examination and regular hematology and clinical chemistry data) even when administered i.v. at a high dose (30 mg/kg per day × 23 days). Moreover, new pharmacological advances are being developed to increase its bioavailability and, thereby, its bioefficacy. Therefore, although applications of PT in cancer therapy are just beginning to be explored, it represents a potential (and effective) adjuvant/sensitizing therapy which may improve the results of various oncotherapies. The aim of this review is to present and discuss the results that in our opinion best support the usefulness of PT in cancer therapy, making special emphasis on the in vivo evidence.
Collapse
|
37
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
38
|
Anti-Stem Cell Property of Pterostilbene in Gastrointestinal Cancer Cells. Int J Mol Sci 2020; 21:ijms21249347. [PMID: 33302440 PMCID: PMC7762551 DOI: 10.3390/ijms21249347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Pterostilbene (PTE) is a natural sterbenoid contained in blueberries that has an antioxidant effect. In contrast, PTE also generates oxidative stress in cancer cells and provides an antitumor effect. Here, we examined the potential mechanism of this contrasting effect of PTE using three gastrointestinal cancer cell lines, namely CT26, HT29, and MKN74. PTE showed a dose-dependent inhibition of cell proliferation, sphere-forming ability, and stem cell marker expression in all three cell lines. Furthermore, the cells treated with PTE showed an increase in mitochondrial membrane potential and an increase in mitochondrial oxidative stress and lipid peroxide. Upon concurrent treatment with vitamin E, N-acetyl-L-cysteine, and PTE, the PTE-induced mitochondrial oxidative stress and growth inhibition were suppressed. These findings indicate that PTE induces oxidative stress in cancer cells, suppresses stemness, and inhibits proliferation. These antitumor effects of PTE are considered to be useful in cancer treatment.
Collapse
|
39
|
Choi YS, Han JM, Kang YJ, Jung HJ. Chloroform extract of Citrus unshiu Markovich peel induces apoptosis and inhibits stemness in HeLa human cervical cancer cells. Mol Med Rep 2020; 23:86. [PMID: 33236129 PMCID: PMC7716394 DOI: 10.3892/mmr.2020.11727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is the second most common cancer among women worldwide. However, chemotherapies for this cancer often cause many side effects and chemoresistance. Citrus unshiu Markovich peel (CECU) has been used as a traditional medicine for the treatment of various diseases in East Asia. Recently, the anticancer activities and mechanisms of action of CECU extract have been reported in a number of different cancer cell types, but no study has evaluated the therapeutic effect of this natural product on cervical cancer cells. In the current study, the anticancer activity and the underlying molecular mechanism of the chloroform extract of CECU was investigated on HeLa human cervical cancer cells. The results showed that CECU effectively inhibited the proliferation and migration of HeLa cells. Treatment of cells with CECU led to cell cycle arrest at the G2/M phase and activation of extrinsic and intrinsic apoptotic pathways. Furthermore, the proliferation inhibitory effect of CECU was due to the inactivation of AKT and ERK signaling, upregulation of p53 and p21, and downregulation of cyclin B1 and cyclin D1, but not reactive oxygen species (ROS) generation. Furthermore, CECU inhibited the stem‑like features of HeLa cells by downregulating key cancer stemness biomarkers. Therefore, CECU may be an effective complementary and alternative medicine for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Ye Seul Choi
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, South Chungcheong 31460, Republic of Korea
| | - Jang Mi Han
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, South Chungcheong 31460, Republic of Korea
| | - Yue Jai Kang
- Department of Aquatic Life and Medical Sciences, Sun Moon University, Asan, South Chungcheong 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, South Chungcheong 31460, Republic of Korea
| |
Collapse
|
40
|
Bhaskara VK, Mittal B, Mysorekar VV, Amaresh N, Simal-Gandara J. Resveratrol, cancer and cancer stem cells: A review on past to future. Curr Res Food Sci 2020; 3:284-295. [PMID: 33305295 PMCID: PMC7718213 DOI: 10.1016/j.crfs.2020.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer remains to be an unresolved medical challenge despite of tremendous advancement in basic science research and clinical medicine. One of the major limitations is due to the side effects of chemotherapy which remains to be palliative without offering any permanent cure for cancer. Cancer stem cells (CSCs) are the subpopulation of cells in tumors that remain viable even after surgery, chemo- and radio-therapy that eventually responsible for tumor relapse. Hence, by eliminating non-stem cancer cells and cancer stem cells from the patient, permanent cure is expected. Phytochemicals have been under the intensive study to target these CSCs effectively and permanently as they do not cause any side effects. Resveratrol (RSV) is one such compound attaining lot of interest in recent days to target CSCs either alone or in combination. RSV has been used by several researchers to target cancer cells in a variety of disease models, however its CSC targeting abilities are under intensive study at present. This review is to summarize the effects of RSV under in vitro and in vivo conditions along with advantages and disadvantages of its uses against cancer cells and cancer stem cells. From the first reports on phytochemical applications against cancer and cancer stem cells in 1997 and 2002 respectively followed by later reports, up to date observations and developments are enlisted from PubMed in this comprehensive review. RSV is shown to be a potential compound having impact on altering the signal transduction pathways in cancer cells. However, the effects are variable under in vitro and in vivo conditions, and also with its use alone or in combination with other small molecules. Past research on RSV is emphasizing the importance of in vivo experimental models and clinical trials with different prospective combinations, is a hope for future promising treatment regimen.
Collapse
Affiliation(s)
- Vasanth K Bhaskara
- Department of Biochemistry-PG, Ramaiah Post Graduate Center, Ramaiah College - RCASC, Bengaluru 560054, India
| | - Bharti Mittal
- Immuniteit Lab Pvt Ltd., Electronic City, Bengaluru 560024, India
| | - Vijaya V Mysorekar
- Department of Pathology, Ramaiah Medical College & Hospitals (RMCH), Bengaluru 560054, India
| | - Nagarathna Amaresh
- Department of Biotechnology, Ramaiah Post Graduate Center, Ramaiah College - RCASC, Bengaluru 560054, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
41
|
Recent Advances in Synthesis, Bioactivity, and Pharmacokinetics of Pterostilbene, an Important Analog of Resveratrol. Molecules 2020; 25:molecules25215166. [PMID: 33171952 PMCID: PMC7664215 DOI: 10.3390/molecules25215166] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Pterostilbene is a natural 3,5-dimethoxy analog of resveratrol. This stilbene compound has a strong bioactivity and exists widely in Dalbergia and Vaccinium spp. Besides natural extraction, pterostilbene can be obtained by biosynthesis. Pterostilbene has become popular because of its remarkable pharmacological activities, such as anti-tumor, anti-oxidation, anti-inflammation, and neuroprotection. Pterostilbene can be rapidly absorbed and is widely distributed in tissues, but it does not seriously accumulate in the body. Pterostilbene can easily pass through the blood-brain barrier because of its low molecular weight and good liposolubility. In this review, the studies performed in the last three years on resources, synthesis, bioactivity, and pharmacokinetics of pterostilbene are summarized. This review focuses on the effects of pterostilbene on certain diseases to explore its targets, explain the possible mechanism, and look for potential therapeutic applications.
Collapse
|
42
|
Anticancer and Antiangiogenic Activities of Novel α-Mangostin Glycosides in Human Hepatocellular Carcinoma Cells via Downregulation of c-Met and HIF-1α. Int J Mol Sci 2020; 21:ijms21114043. [PMID: 32516967 PMCID: PMC7312821 DOI: 10.3390/ijms21114043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Therefore, exploring effective anticancer agents and their modes of action is essential for the prevention and treatment of HCC. Glycosylation can significantly improve the physicochemical and biological properties of small molecules, such as high solubility, stability increase, and lower toxicity. In the present study, for the first time, we evaluated the anticancer and antiangiogenic activities of α-mangostin-3-O-β-D-2-deoxyglucopyranoside (Man-3DG) and α-mangostin 6-O-β-D-2-deoxyglucopyranoside (Man-6DG), glycosides of α-mangostin, against human HCC cells. Our results demonstrated that Man-3DG and Man-6DG significantly suppressed the growth of three different HCC cells (Hep3B, Huh7, and HepG2) as well as the migration of Hep3B cells. Furthermore, they induced cell cycle arrest in the G0/G1 phases and apoptotic cell death by regulating apoptosis-related proteins of mitochondria in Hep3B cells. Noticeably, Man-3DG and Man-6DG also caused autophagy, while co-treatment of the α-mangostin glycosides with an autophagy inhibitor 3-MA enhanced the inhibitory effect on Hep3B cell growth in comparison to single agent treatment. Moreover, Man-3DG and Man-6DG inhibited the c-Met signaling pathway that plays a critical role in the pathogenesis of HCC. Furthermore, the α-mangostin glycosides decreased Hep3B cell-induced angiogenesis in vitro through the downregulation of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Notably, Man-6DG more effectively inhibited the growth, tumorsphere formation, and expression of cancer stemness regulators compared to α-mangostin and Man-3DG in 3D spheroid-cultured Hep3B cells. These findings suggest that the α-mangostin glycosides might be promising anticancer agents for HCC treatment with superior pharmacological properties than the parent molecule α-mangostin.
Collapse
|
43
|
Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020; 25:molecules25040893. [PMID: 32085381 PMCID: PMC7070981 DOI: 10.3390/molecules25040893] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 01/19/2023] Open
Abstract
This review aims to explore the potential of resveratrol, a polyphenol stilbene, and beta-lapachone, a naphthoquinone, as well as their derivatives, in the development of new drug candidates for cancer. A brief history of these compounds is reviewed along with their potential effects and mechanisms of action and the most recent attempts to improve their bioavailability and potency against different types of cancer.
Collapse
|