1
|
Reigada I, Kapp K, Kaudela T, García Soria M, Oksanen T, Hanski L. Tracking Chlamydia - Host interactions and antichlamydial activity in Caenorhabditis elegans. Biomed Pharmacother 2024; 177:116956. [PMID: 38901202 DOI: 10.1016/j.biopha.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
The fading efficacy of antibiotics is a growing global health concern due to its life-threatening consequences and increased healthcare costs. Non-genetic mechanisms of antimicrobial resistance, such as those employed by Chlamydia pneumoniae and Chlamydia trachomatis, complicate treatment as these bacteria can enter a non-replicative, persistent state under stress, evading antibiotics and linking to inflammatory conditions. Understanding chlamydial persistence at the molecular level is challenging, and new models for studying Chlamydia-host interactions in vivo are urgently needed. Caenorhabditis elegans offers an alternative given its immune system and numerous orthologues of human genes. This study established C. elegans as an in vivo model for chlamydial infection. Both Chlamydia species reduced the worm's lifespan, their DNA being detectable at three- and six-days post-infection. Azithromycin at its MIC (25 nM) failed to prevent the infection-induced lifespan reduction, indicating a persister phenotype. In contrast, the methanolic extract of Schisandra chinensis berries showed anti-chlamydial activity both in vitro (in THP-1 macrophages) and in vivo, significantly extending the lifespan of infected C. elegans and reducing the bacterial load. Moreover, S. chinensis increased the transcriptional activity of SKN-1 in the worms, but was unable to impact the bacterial load or lifespan in a sek-1 defective C. elegans strain. In summary, this study validated C. elegans as a chlamydial infection model and showcased S. chinensis berries' in vivo anti-chlamydial potential, possibly through SEK/SKN-1 signaling modulation.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Karmen Kapp
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Theresa Kaudela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - María García Soria
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge (San Jorge University), Zaragoza 50830, Spain
| | - Timo Oksanen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
2
|
Mishra AK, Thakare RP, Santani BG, Yabaji SM, Dixit SK, Srivastava KK. Unlocking the enigma of phenotypic drug tolerance: Mechanisms and emerging therapeutic strategies. Biochimie 2024; 220:67-83. [PMID: 38168626 DOI: 10.1016/j.biochi.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
In the ongoing battle against antimicrobial resistance, phenotypic drug tolerance poses a formidable challenge. This adaptive ability of microorganisms to withstand drug pressure without genetic alterations further complicating global healthcare challenges. Microbial populations employ an array of persistence mechanisms, including dormancy, biofilm formation, adaptation to intracellular environments, and the adoption of L-forms, to develop drug tolerance. Moreover, molecular mechanisms like toxin-antitoxin modules, oxidative stress responses, energy metabolism, and (p)ppGpp signaling contribute to this phenomenon. Understanding these persistence mechanisms is crucial for predicting drug efficacy, developing strategies for chronic bacterial infections, and exploring innovative therapies for refractory infections. In this comprehensive review, we dissect the intricacies of drug tolerance and persister formation, explore their role in acquired drug resistance, and highlight emerging therapeutic approaches to combat phenotypic drug tolerance. Furthermore, we outline the future landscape of interventions for persistent bacterial infections.
Collapse
Affiliation(s)
- Alok K Mishra
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| | - Ritesh P Thakare
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Bela G Santani
- Department of Microbiology, Sant Gadge Baba Amravati University (SGBAU), Amravati, Maharashtra, India
| | - Shivraj M Yabaji
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Shivendra K Dixit
- Division of Medicine ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar Bareilly, Uttar Pradesh, 243122, India.
| | - Kishore K Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
3
|
Xu HN, Wang W, Li XZ, Sun Y, Li YZ, Deng C, Song XM, Zhang DD. A Review of Extraction and Purification, Biological Properties, Structure-Activity Relationships and Future Prospects of Schisandrin C: A Major Active Constituent of Schisandra Chinensis. Chem Biodivers 2023; 20:e202301298. [PMID: 37990607 DOI: 10.1002/cbdv.202301298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
Since ancient times, China has used natural medicine as the primary way to combat diseases and has a rich arsenal of natural medicines. With the progress of the times, the extraction of bioactive molecules from natural drugs has become the new development direction for natural medicines. Among the numerous natural drugs, Schisandrin C (Sch C), derived from Schisandra Chinensis (Turcz.) Baill. It has excellent potential for development and has been shown to possess various pharmacological properties, including hepatoprotective, antitumor and anti-inflammatory activities. Based on the biological properties of hepatoprotection, scholars have explored Sch C and its synthetic products in depth; some studies have shown that pentosidine has the effect of improving the symptoms of liver fibrosis and reducing the concentration of alanine transaminase (ALT) and aspartate aminotransferase (AST) in the serum of rats, which is an essential inspiration for the development of anti-liver fibrosis drugs. But more in vivo and ex vivo studies still need to be included. This paper focuses on Sch C's extraction and synthesis, biological activities and drug development progress. The future application prospects of Sch C are discussed to perfect its development work further.
Collapse
Affiliation(s)
- Hao-Nan Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Xin-Zhuo Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Yu Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| |
Collapse
|
4
|
Taavitsainen-Wahlroos E, Reigada I, Sulmona I, Hanski L. Impact of azithromycin, doxycycline and redox-active small molecules on amoxicillin-induced Chlamydia pneumoniae persistence. Biomed Pharmacother 2023; 167:115451. [PMID: 37690390 DOI: 10.1016/j.biopha.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Amoxicillin is recommended as primary treatment for community-acquired bacterial pneumonia (CABP). 5-10% of CABP cases are caused by Chlamydia pneumoniae, an obligate intracellular bacterium which responds to beta-lactam antibiotics by converting to a persistent phenotype. To support rational pharmacotherapy of C. pneumoniae infections, we investigated how clinically relevant concentrations of azithromycin and doxycycline affect amoxicillin induced C. pneumoniae persistence. Given the known role of redox state alterations in the action of bactericidal antibiotics and widespread use of redox-active dietary supplements when experiencing respiratory symptoms, we also studied how redox active compounds affect the studied antibiotic treatments. Our data demonstrate that clinically applied amoxicillin concentrations (10 and 25 mg/l) fail to eradicate C. pneumoniae infection in respiratory epithelial cells. Transmission electron microscopy (TEM) of amoxicillin-treated C. pneumoniae infected cells reveal aberrant bacterial morphology characteristic of chlamydial stress response. Amoxicillin was also found to significantly limit the antichlamydial effect of azithromycin or doxycycline. However, based on quantitative culture and quantitative PCR data, azithromycin was superior to doxycycline in C. pneumoniae eradication either as monotherapy or in combination with amoxicillin. Amoxicillin was also found to decrease respiratory epithelial cell glutathione (GSH) levels, whereas redox-active dibenzocyclooctadiene lignans increased C. pneumoniae load in amoxicillin-treated cultures up to two-fold. These data highlight the impact of relative administration time on the efficacy of antichlamydial antibiotics and indicate unfavorable interactions between amoxicillin and redox-active small molecules.
Collapse
Affiliation(s)
- Eveliina Taavitsainen-Wahlroos
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Ilaria Sulmona
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Tommaso De Amicis 95, 80131, Naples, Italy
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland.
| |
Collapse
|
5
|
Chlamydia pneumoniae Interferes with Macrophage Differentiation and Cell Cycle Regulation to Promote Its Replication. Cell Microbiol 2022. [DOI: 10.1155/2022/9854449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlamydia pneumoniae is a ubiquitous intracellular bacterium which infects humans via the respiratory route. The tendency of C. pneumoniae to persist in monocytes and macrophages is well known, but the underlying host-chlamydial interactions remain elusive. In this work, we have described changes in macrophage intracellular signaling pathways induced by C. pneumoniae infection. Label-free quantitative proteome analysis and pathway analysis tools were used to identify changes in human THP-1-derived macrophages upon C. pneumoniae CV6 infection. At 48-h postinfection, pathways associated to nuclear factor κB (NF-κB) regulation were stressed, while negative regulation on cell cycle control was prominent at both 48 h and 72 h. Upregulation of S100A8 and S100A9 calcium binding proteins, osteopontin, and purine nucleoside hydrolase, laccase domain containing protein 1 (LACC1) underlined the proinflammatory consequences of the infection, while elevated NF-κB2 levels in infected macrophages indicates interaction with the noncanonical NF-κB pathway. Infection-induced alteration of cell cycle control was obvious by the downregulation of mini chromosome maintenance (MCM) proteins MCM2-7, and the significance of host cell cycle regulation for C. pneumoniae replication was demonstrated by the ability of a cyclin-dependent kinase (CDK) 4/6 inhibitor Palbociclib to promote C. pneumoniae replication and infectious progeny production. The infection was found to suppress retinoblastoma expression in the macrophages in both protein and mRNA levels, and this change was reverted by treatment with a histone deacetylase inhibitor. The epigenetic suppression of retinoblastoma, along with upregulation of S100A8 and S100A9, indicate host cell changes associated with myeloid-derived suppressor cell (MDSC) phenotype.
Collapse
|
6
|
Kortesoja M, Trofin RE, Hanski L. A platform for studying the transfer of Chlamydia pneumoniae infection between respiratory epithelium and phagocytes. J Microbiol Methods 2020; 171:105857. [PMID: 32006529 DOI: 10.1016/j.mimet.2020.105857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
The obligate intracellular bacterium, Chlamydia pneumoniae, has been identified as a risk factor for several chronic inflammatory diseases in addition to respiratory tract infections. The dissemination of C. pneumoniae from respiratory tract to secondary sites of infection occurs via infected monocyte / macrophage line cells, in which C. pneumoniae can persist as an antibiotic-refractory phenotype. To allow more detailed studies on the epithelium-monocyte/macrophage transition of the infection, new in vitro bioassays are needed. To this end, a coculture system with human continuous cell lines was established. Respiratory epithelial HL cells were infected with C. pneumoniae and THP-1 monocytes were added into the cultures at 67 h post infection. After a 5 h coculture, THP-1 cells were collected with a biotinylated HLA antibody and streptavidin-coated magnetic beads and C. pneumoniae genome copy numbers in THP-1 determined by quantitative PCR. The assay was optimized for cell densities, incubation time, THP-1 separation technique and buffer composition, and its robustness was demonstrated by a Z' value of 0.6. The mitogen-activated protein kinase (MAPK) inhibitors: SP600125 (JNK inhibitor), SB203580 (p38 inhibitor) and FR180204 (ERK inhibitor) suppressed the transfer of C. pneumoniae from HL to THP-1 cells, making them suitable positive controls for the assay. Based on analysis of separate steps of the process, the MAPK inhibitors suppress the bacterial entry to THP-1 cells. The transfer of C. pneumoniae from epithelium to phagocytes represents a crucial step in the establishment of persistent infections by this pathogen, and the presented methods enables future studies to block this process by therapeutic means.
Collapse
Affiliation(s)
- Maarit Kortesoja
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Raluca Elena Trofin
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland; Faculty of Pharmacy, University of Bucharest, Bulevardul Regina Elisabeta 4-12, 030018 Bucharest, Romania
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland.
| |
Collapse
|