2
|
Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics 2021; 13:pharmaceutics13071103. [PMID: 34371794 PMCID: PMC8309061 DOI: 10.3390/pharmaceutics13071103] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein (P-gp) is crucial in the active transport of various substrates with diverse structures out of cells, resulting in poor intestinal permeation and limited bioavailability following oral administration. P-gp inhibitors, including small molecule drugs, natural constituents, and pharmaceutically inert excipients, have been exploited to overcome P-gp efflux and enhance the oral absorption and bioavailability of many P-gp substrates. The co-administration of small molecule P-gp inhibitors with P-gp substrates can result in drug–drug interactions and increased side effects due to the pharmacological activity of these molecules. On the other hand, pharmaceutically inert excipients, including polymers, surfactants, and lipid-based excipients, are safe, pharmaceutically acceptable, and are not absorbed from the gut. Notably, they can be incorporated in pharmaceutical formulations to enhance drug solubility, absorption, and bioavailability due to the formulation itself and the P-gp inhibitory effects of the excipients. Different formulations with inherent P-gp inhibitory activity have been developed. These include micelles, emulsions, liposomes, solid lipid nanoparticles, polymeric nanoparticles, microspheres, dendrimers, and solid dispersions. They can bypass P-gp by different mechanisms related to their properties. In this review, we briefly introduce P-gp and P-gp inhibitors, and we extensively summarize the current development of oral drug delivery systems that can bypass and inhibit P-gp to improve the oral absorption and bioavailability of P-gp substrates. Since many drugs are limited by P-gp-mediated efflux, this review is helpful for designing suitable formulations of P-gp substrates to enhance their oral absorption and bioavailability.
Collapse
|
3
|
Karp F, Satler FS, Busatto CA, Luna JA, Estenoz DA, Turino LN. Modulating drug release from poly(lactic‐co‐glycolic) acid microparticles by the addition of alginate and pectin. J Appl Polym Sci 2021. [DOI: 10.1002/app.50293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Federico Karp
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| | - Florencia S. Satler
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| | - Carlos A. Busatto
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| | - Julio A. Luna
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| | - Diana A. Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| | - Ludmila N. Turino
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| |
Collapse
|
4
|
Wen J, Gao X, Zhang Q, Sahito B, Si H, Li G, Ding Q, Wu W, Nepovimova E, Jiang S, Wang L, Kuca K, Guo D. Optimization of Tilmicosin-Loaded Nanostructured Lipid Carriers Using Orthogonal Design for Overcoming Oral Administration Obstacle. Pharmaceutics 2021; 13:303. [PMID: 33669090 PMCID: PMC7996536 DOI: 10.3390/pharmaceutics13030303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Tilmicosin (TMS) is widely used to treat bacterial infections in veterinary medicine, but the clinical effect is limited by its poor solubility, bitterness, gastric instability, and intestinal efflux transport. Nanostructured lipid carriers (NLCs) are nowadays considered to be a promising vector of therapeutic drugs for oral administration. In this study, an orthogonal experimental design was applied for optimizing TMS-loaded NLCs (TMS-NLCs). The ratios of emulsifier to mixed lipids, stearic acid to oleic acid, drugs to mixed lipids, and cold water to hot emulsion were selected as the independent variables, while the hydrodynamic diameter (HD), drug loading (DL), and entrapment efficiency (EE) were the chosen responses. The optimized TMS-NLCs had a small HD, high DL, and EE of 276.85 ± 2.62 nm, 9.14 ± 0.04%, and 92.92 ± 0.42%, respectively. In addition, a low polydispersity index (0.231 ± 0.001) and high negative zeta potential (-31.10 ± 0.00 mV) indicated the excellent stability, which was further demonstrated by uniformly dispersed spherical nanoparticles under transmission electron microscopy. TMS-NLCs exhibited a slow and sustained release behavior in both simulated gastric juice and intestinal fluid. Furthermore, MDCK-chAbcg2/Abcb1 cell monolayers were successfully established to evaluate their absorption efficiency and potential mechanism. The results of biodirectional transport showed that TMS-NLCs could enhance the cellular uptake and inhibit the efflux function of drug transporters against TMS in MDCK-chAbcg2/Abcb1 cells. Moreover, the data revealed that TMS-NLCs could enter the cells mainly via the caveolae/lipid raft-mediated endocytosis and partially via macropinocytosis. Furthermore, TMS-NLCs showed the same antibacterial activity as free TMS. Taken together, the optimized NLCs were the promising oral delivery carrier for overcoming oral administration obstacle of TMS.
Collapse
Affiliation(s)
- Jia Wen
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Xiuge Gao
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Qian Zhang
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Benazir Sahito
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China; (H.S.); (G.L.)
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China; (H.S.); (G.L.)
| | - Qi Ding
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China;
| | - Wenda Wu
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Shanxiang Jiang
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Liping Wang
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Dawei Guo
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| |
Collapse
|
5
|
Khan I, Hussein S, Houacine C, Khan Sadozai S, Islam Y, Bnyan R, Elhissi A, Yousaf S. Fabrication, characterization and optimization of nanostructured lipid carrier formulations using Beclomethasone dipropionate for pulmonary drug delivery via medical nebulizers. Int J Pharm 2021; 598:120376. [PMID: 33617949 DOI: 10.1016/j.ijpharm.2021.120376] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/03/2023]
Abstract
Aerosolization is a non-invasive approach in drug delivery for localized and systemic effect. Nanostructured lipid carriers (NLCs) are new generation versatile carriers, which offer protection from degradation and enhance bioavailability of poorly water soluble drugs. The aim of this study was to develop and optimize NLC formulations in combination with optimized airflow rates (i.e. 60 and 15 L/min) and choice of medical nebulizers including Air jet, Vibrating mesh and Ultrasonic nebulizer for superior aerosolization performance, assessed via a next generation impactor (NGI). Novel composition and combination of NLC formulations (F1 - F15) were prepared via ultrasonication method, employing five solid lipids (glycerol trimyristate (GTM), glycerol trilaurate (GTL), cetyl palmitate (CP), glycerol monostearate (GMS) and stearic acid (SA)); and three liquid lipids (glyceryl tributyrate (GTB), propylene glycol dicaprylate/dicaprate (PGD) and isopropyl palmitate (IPP)) in 1:3 w/w ratios (i.e. combination of one solid and one liquid lipid), with Beclomethasone dipropionate (BDP) incorporated as the model drug. Out of fifteen BDP-NLC formulations, the physicochemical properties of formulations F7, F8 and F10 exhibited desirable stability (one week at 25 °C), with associated particle size of ~241 nm, and >91% of drug entrapment. Post aerosolization, F10 was observed to deposit notably smaller sized particles (from 198 to 136 nm, 283 to 135 nm and 239 to 157 nm for Air jet, Vibrating mesh and Ultrasonic nebulizers, respectively) in all stages (i.e. from stage 1 to 8) of the NGI, when compared to F7 and F8 formulations. Six week stability studies conducted at 4, 25 and 45 °C, demonstrated F10 formulation stability in terms of particle size, irrespective of temperature conditions. Nebulizer performance study using the NGI for F10 identified the Air jet to be the most efficient nebulizer, depositing lower concentrations of BDP in the earlier stages (1-3) and higher (circa 82 and 85%) in the lateral stages (4-8) using 60 and 15 L/min airflow rates, when compared to the Vibrating mesh and Ultrasonic nebulizers. Moreover, at both airflow rates, the Air jet nebulizer elicited a longer nebulization time of ~42 min, facilitating aerosol inhalation for prophylaxis of asthma with normal tidal breathing. Based on characterization and nebulizer performance employing both 60 and 15 L/min airflow rates, the Air jet nebulizer offered enhanced performance, exhibiting a higher fine particle dose (FPD) (90 and 69 µg), fine particle fraction (FPF) (70 and 54%), respirable fraction (RF) (92 and 69%), and lower mass median aerodynamic diameter (MMAD) (1.15 and 1.62 µm); in addition to demonstrating higher drug deposition in the lateral parts of the NGI, when compared to its counterpart nebulizers. The F10 formulation used with the Air jet nebulizer was identified as being the most suitable combination for delivery of BDP-NLC formulations.
Collapse
Affiliation(s)
- Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| | - Sozan Hussein
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Sajid Khan Sadozai
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yamir Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Ruba Bnyan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sakib Yousaf
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
6
|
Yu J, Wang M, Ahmed R, Zhao H, Cohen Stuart MA, Wang J. Facile Preparation of Tilmicosin-Loaded Polymeric Nanoparticle with Controlled Properties and Functions. ACS OMEGA 2020; 5:32366-32372. [PMID: 33376873 PMCID: PMC7758884 DOI: 10.1021/acsomega.0c04314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 05/08/2023]
Abstract
As one of the effective broad-spectrum antimicrobial and anti-inflammatory drugs, tilmicosin (TIM) is applied extensively in a wide range of veterinary treatments. However, the low bioavailability typically leads to overuse of TIM in practical applications, which can cause residual accumulation in the environment and contamination of foodstuffs. Here, we report a precipitation method that allows us to prepare TIM-loaded poly(methyl methacrylate-co-methacrylic acid) (P(MMA-co-MAA)) nanoparticles. Specifically, TIM and biocompatible P(MMA-co-MAA) are dissolved in methanol and then water is introduced as an antisolvent, which triggers the co-precipitation and leads to well-controlled nanoparticles. Depending on the drug/polymer mass ratio and the total concentration of drug and polymer, the formed nanoparticles display a tunable radius from 27 to 80 nm with a narrow size distribution, a high drug loading content, and a controlled release of TIM. The encapsulation does not interrupt the antibacterial function of TIM while reducing its cytotoxicity enormously. Moreover, the formed nanoparticles could be dried to powder through freeze-drying, and the redispersion of the particles hardly disturbs the particle size, size distribution, and drug loading content. Our study developed a facile and robust precipitation method for the controlled construction of TIM-loaded polymeric nanoparticles with tunable properties and functions, as well as improved biocompatibility, which shall improve the bioavailability of TIM and enhance the practical applications.
Collapse
|