1
|
Feng M, Li Y, Sun Y, Liu T, Yunusov KE, Jiang G. Integration of metformin-loaded MIL-100(Fe) into hydrogel microneedles for prolonged regulation of blood glucose levels. Biomed Phys Eng Express 2024; 10:045004. [PMID: 38670077 DOI: 10.1088/2057-1976/ad43f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
The transdermal drug delivery based on microneedles (MNs) provides a suitable and painless self-administration for diabetic patients. In this work, the hydrogel-forming MNs were firstly fabricated using poly(vinyl alcohol) (PVA) and chitosan (CS) as matrix. A hypoglycemic drug, metformin (Met), had been loaded into MIL-100(Fe). Then, both of free Met and Met-loaded MIL-100(Fe) were integrated into hydrogel-forming MNs for regulation of blood glucose levels (BGLs) on diabetic rats. After penetrated into the skin, the free Met could be firstly released from MNs. Due to the absorption of interstitial fluid and subsequent release of loaded Met from MIL-100(Fe), leading to a sustainable and long-term drug release behaviors. A notable hypoglycemic effect and low risk of hypoglycemia could be obtained on diabetic rat modelsin vivo. The as-fabricated hydrogel-forming MNs expected to become a new type of transdermal drug delivery platform for transdermal delivery of high-dose drugs to form a long-term hypoglycemic effect.
Collapse
Affiliation(s)
- Mingjia Feng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Alavi SE, Alharthi S, Alavi SF, Alavi SZ, Zahra GE, Raza A, Ebrahimi Shahmabadi H. Microfluidics for personalized drug delivery. Drug Discov Today 2024; 29:103936. [PMID: 38428803 DOI: 10.1016/j.drudis.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
This review highlights the transformative impact of microfluidic technology on personalized drug delivery. Microfluidics addresses issues in traditional drug synthesis, providing precise control and scalability in nanoparticle fabrication, and microfluidic platforms show high potential for versatility, offering patient-specific dosing and real-time monitoring capabilities, all integrated into wearable technology. Covalent conjugation of antibodies to nanoparticles improves bioactivity, driving innovations in drug targeting. The integration of microfluidics with sensor technologies and artificial intelligence facilitates real-time feedback and autonomous adaptation in drug delivery systems. Key challenges, such as droplet polydispersity and fluidic handling, along with future directions focusing on scalability and reliability, are essential considerations in advancing microfluidics for personalized drug delivery.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia.
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Seyedeh Fatemeh Alavi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, PR China
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Gull E Zahra
- Government College University Faisalabad, Faisalabad, Pakistan
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran.
| |
Collapse
|
3
|
Pacheco MO, Lutz HM, Armada J, Davies N, Gerzenshtein IK, Cakley AS, Spiess BD, Stoppel WL. Silk Fibroin Particles as Carriers in the Development of Hemoglobin-Based Oxygen Carriers. ADVANCED NANOBIOMED RESEARCH 2023; 3:2300019. [PMID: 38708087 PMCID: PMC11068031 DOI: 10.1002/anbr.202300019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Oxygen therapeutics have a range of applications in transfusion medicine and disease treatment. Synthetic molecules and all-natural or semi-synthetic hemoglobin-based oxygen carriers (HBOCs) have seen success as potential circulating oxygen carriers. However, many early HBOC products stalled in development due to side effects from excess hemoglobin in the blood stream and hemoglobin entering the tissue. To overcome these issues, research has focused on increasing the molecular diameter of hemoglobin by polymerizing hemoglobin molecules or encapsulating hemoglobin in liposomal carriers. This work leverages the properties of silk fibroin, a cytocompatible and non-thrombogenic biopolymer, known to entrap protein-based cargo, to engineer a fully protein-based oxygen carrier. Herein, an all-aqueous solvent evaporation technique was used to form silk particles via phase separation from a bulk polyvinyl alcohol phase (PVA). Particles size was tuned, and particles were formed with and without hemoglobin. The encapsulation efficiency and ferrous state of hemoglobin were analyzed, resulting in 60% encapsulation efficiency and a maximum of 20% ferric hemoglobin, yielding 100 µg/mL active hemoglobin in certain sfHBOC formulations. The system did not elicit a strong inflammation response in vitro, demonstrating the potential for this particle system to serve as an injectable HBOC.
Collapse
Affiliation(s)
- Marisa O Pacheco
- Department of Chemical Engineering, University of Florida, Gainesville FL
| | - Henry M Lutz
- Department of Chemical Engineering, University of Florida, Gainesville FL
| | - Jostin Armada
- Department of Chemical Engineering, University of Florida, Gainesville FL
| | - Nickolas Davies
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville FL
| | | | - Alaura S Cakley
- Department of Chemical Engineering, University of Florida, Gainesville FL
| | - Bruce D Spiess
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville FL
| | - Whitney L Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville FL
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL
| |
Collapse
|
4
|
Pacheco MO, Lutz HM, Armada J, Davies N, Gerzenshtein IK, Cakley AS, Spiess BD, Stoppel WL. Silk Fibroin Particles as Carriers in the Development of All-Natural Hemoglobin-Based Oxygen Carriers (HBOCs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530637. [PMID: 36909572 PMCID: PMC10002772 DOI: 10.1101/2023.03.01.530637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Oxygen therapeutics have a range of applications in transfusion medicine and disease treatment. Synthetic molecules and all-natural or semi-synthetic hemoglobin-based oxygen carriers (HBOCs) have seen success as potential circulating oxygen carriers. However, many early HBOC products were removed from the market due to side effects from excess hemoglobin in the blood stream and hemoglobin entering the tissue. To overcome these issues, research has focused on increasing the molecular diameter of hemoglobin by polymerizing hemoglobin molecules or encapsulating hemoglobin in liposomal carriers, where immune responses and circulation times remain a challenge. This work looks to leverage the properties of silk fibroin, a cytocompatible and non-thrombogenic biopolymer, known to entrap protein-based cargo, to engineer a silk fibroin-hemoglobin-based oxygen carrier (sfHBOC). Herein, an all-aqueous solvent evaporation technique was used to form silk fibroin particles with and without hemoglobin to tailor the formulation for specific particle sizes. The encapsulation efficiency and ferrous state of hemoglobin were analyzed, resulting in 60% encapsulation efficiency and a maximum of 20% ferric hemoglobin, yielding 100 µg/mL active hemoglobin in certain sfHBOC formulations. The system did not elicit a strong inflammation response in vitro, demonstrating the potential for this particle system to serve as an injectable HBOC.
Collapse
Affiliation(s)
- Marisa O Pacheco
- Department of Chemical Engineering, University of Florida, Gainesville FL
| | - Henry M Lutz
- Department of Chemical Engineering, University of Florida, Gainesville FL
| | - Jostin Armada
- Department of Chemical Engineering, University of Florida, Gainesville FL
| | - Nickolas Davies
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville FL
| | | | - Alaura S Cakley
- Department of Chemical Engineering, University of Florida, Gainesville FL
| | - Bruce D Spiess
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville FL
| | - Whitney L Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville FL
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL
| |
Collapse
|
5
|
Pacheco MO, Eccles LE, Davies NA, Armada J, Cakley AS, Kadambi IP, Stoppel WL. Progress in silk and silk fiber-inspired polymeric nanomaterials for drug delivery. FRONTIERS IN CHEMICAL ENGINEERING 2022; 4:1044431. [PMID: 38487791 PMCID: PMC10939129 DOI: 10.3389/fceng.2022.1044431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
The fields of drug and gene delivery have been revolutionized by the discovery and characterization of polymer-based materials. Polymeric nanomaterials have emerged as a strategy for targeted delivery because of features such as their impressive biocompatibility and improved availability. Use of naturally derived polymers in these nanomaterials is advantageous due to their biodegradability and bioresorption. Natural biopolymer-based particles composed of silk fibroins and other silk fiber-inspired proteins have been the focus of research in drug delivery systems due to their simple synthesis, tunable characteristics, and ability to respond to stimuli. Several silk and silk-inspired polymers contain a high proportion of reactive side groups, allowing for functionalization and addition of targeting moieties. In this review, we discuss the main classes of silk and silk-inspired polymers that are being used in the creation of nanomaterials. We also focus on the fabrication techniques used in generating a tunable design space of silk-based polymeric nanomaterials and detail how that translates into use for drug delivery to several distinct microenvironments.
Collapse
Affiliation(s)
- Marisa O Pacheco
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Lauren E Eccles
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | | | - Jostin Armada
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Alaura S Cakley
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Isiri P Kadambi
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Whitney L Stoppel
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
6
|
Ruan L, Su M, Qin X, Ruan Q, Lang W, Wu M, Chen Y, Lv Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio 2022; 16:100394. [PMID: 36042853 PMCID: PMC9420381 DOI: 10.1016/j.mtbio.2022.100394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2023] Open
Abstract
Sustained-release drug-loaded microspheres provide a long-acting sustained release, with targeted and other effects. There are many types of sustained-release drug microspheres and various preparation methods, and they are easy to operate. For these reasons, they have attracted widespread interest and are widely used in tissue engineering and other fields. In this paper, we provide a systematic review of the application of sustained-release drug microspheres in tissue engineering. First, we introduce this new type of drug delivery system (sustained-release drug carriers), describe the types of sustained-release drug microspheres, and summarize the characteristics of different microspheres. Second, we summarize the preparation methods of sustained-release drug microspheres and summarize the materials required for preparing microspheres. Third, various applications of sustained-release drug microspheres in tissue engineering are summarized. Finally, we summarize the shortcomings and discuss future prospects in the development of sustained-release drug microspheres. The purpose of this paper was to provide a further systematic understanding of the application of sustained-release drug microspheres in tissue engineering for the personnel engaged in related fields and to provide inspiration and new ideas for studies in related fields.
Collapse
Affiliation(s)
- Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qingting Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China
| |
Collapse
|
7
|
Florczak A, Deptuch T, Kucharczyk K, Dams-Kozlowska H. Systemic and Local Silk-Based Drug Delivery Systems for Cancer Therapy. Cancers (Basel) 2021; 13:5389. [PMID: 34771557 PMCID: PMC8582423 DOI: 10.3390/cancers13215389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
For years, surgery, radiotherapy, and chemotherapy have been the gold standards to treat cancer, although continuing research has sought a more effective approach. While advances can be seen in the development of anticancer drugs, the tools that can improve their delivery remain a challenge. As anticancer drugs can affect the entire body, the control of their distribution is desirable to prevent systemic toxicity. The application of a suitable drug delivery platform may resolve this problem. Among other materials, silks offer many advantageous properties, including biodegradability, biocompatibility, and the possibility of obtaining a variety of morphological structures. These characteristics allow the exploration of silk for biomedical applications and as a platform for drug delivery. We have reviewed silk structures that can be used for local and systemic drug delivery for use in cancer therapy. After a short description of the most studied silks, we discuss the advantages of using silk for drug delivery. The tables summarize the descriptions of silk structures for the local and systemic transport of anticancer drugs. The most popular techniques for silk particle preparation are presented. Further prospects for using silk as a drug carrier are considered. The application of various silk biomaterials can improve cancer treatment by the controllable delivery of chemotherapeutics, immunotherapeutics, photosensitizers, hormones, nucleotherapeutics, targeted therapeutics (e.g., kinase inhibitors), and inorganic nanoparticles, among others.
Collapse
Affiliation(s)
- Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Tomasz Deptuch
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Kamil Kucharczyk
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
8
|
Multinucleated Giant Cells Induced by a Silk Fibroin Construct Express Proinflammatory Agents: An Immunohistological Study. MATERIALS 2021; 14:ma14144038. [PMID: 34300957 PMCID: PMC8307820 DOI: 10.3390/ma14144038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Multinucleated giant cells (MNGCs) are frequently observed in the implantation areas of different biomaterials. The main aim of the present study was to analyze the long-term polarization pattern of the pro- and anti-inflammatory phenotypes of macrophages and MNGCs for 180 days to better understand their role in the success or failure of biomaterials. For this purpose, silk fibroin (SF) was implanted in a subcutaneous implantation model of Wistar rats as a model for biomaterial-induced MNGCs. A sham operation was used as a control for physiological wound healing. The expression of different inflammatory markers (proinflammatory M1: CCR-7, iNos; anti-inflammatory M2: CD-206, CD-163) and tartrate-resistant acid phosphatase (TRAP) and CD-68 were identified using immunohistochemical staining. The results showed significantly higher numbers of macrophages and MNGCs within the implantation bed of SF-expressed M1 markers, compared to M2 markers. Interestingly, the expression of proinflammatory markers was sustained over the long observation period of 180 days. By contrast, the control group showed a peak of M1 macrophages only on day 3. Thereafter, the inflammatory pattern shifted to M2 macrophages. No MNGCs were observed in the control group. To the best of our knowledge, this is study is the first to outline the persistence of pro-inflammatory MNGCs within the implantation bed of SF and to describe their long-term kinetics over 180 days. Clinically, these results are highly relevant to understand the role of biomaterial-induced MNGCs in the long term. These findings suggest that tailored physicochemical properties may be a key to avoiding extensive inflammatory reactions and achieving clinical success. Therefore, further research is needed to elucidate the correlation between proinflammatory MNGCs and the physicochemical characteristics of the implanted biomaterial.
Collapse
|
9
|
Toprakcioglu Z, Knowles TPJ. Shear-mediated sol-gel transition of regenerated silk allows the formation of Janus-like microgels. Sci Rep 2021; 11:6673. [PMID: 33758259 PMCID: PMC7988050 DOI: 10.1038/s41598-021-85199-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Microcapsules and microgels consisting of macromolecular networks have received increasing attention due to their biomedical and pharmaceutical applications. Protein microgels and in particular silk-based microcapsules have desirable properties due to their biocompatibility and lack of toxicity. Typically such structures formed through emulsion templating are spherical in geometry due to interfacial tension. However, approaches to synthesis particles with more complex and non-spherical geometries are sought due to their packing properties and cargo release characteristics. Here, we describe a droplet-microfluidic strategy for generating asymmetric tubular-like microgels from reconstituted silk fibroin; a major component of native silk. It was determined using fluorescence microscopy, that the shear stress within the microchannel promotes surface protein aggregation, resulting in the asymmetric morphology of the microgels. Moreover, the structural transition that the protein undergoes was confirmed using FTIR. Crucially, the core of the microgels remains liquid, while the surface has fully aggregated into a fibrillar network. Additionally, we show that microgel morphology could be controlled by varying the dispersed to continuous phase flow rates, while it was determined that the radius of curvature of the asymmetric microgels is correlated to the wall shear stress. By comparing the surface fluorescence intensity of the microgels as a function of radius of curvature, the effect of the shear stress on the amount of aggregation could be quantified. Finally, the potential use of these asymmetric microgels as carriers of cargo molecules is showcased. As the core of the microgel remains liquid but the shell has gelled, this approach is highly suitable for the storage of bio-active cargo molecules such as antibodies, making such a delivery system attractive in the context of biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
10
|
Tomeh MA, Zhao X. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. Mol Pharm 2020; 17:4421-4434. [PMID: 33213144 DOI: 10.1021/acs.molpharmaceut.0c00913] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug delivery systems (DDSs) have great potential for improving the treatment of several diseases, especially microbial infections and cancers. However, the formulation procedures of DDSs remain challenging, especially at the nanoscale. Reducing batch-to-batch variation and enhancing production rate are some of the essential requirements for accelerating the translation of DDSs from a small scale to an industrial level. Microfluidic technologies have emerged as an alternative to the conventional bench methods to address these issues. By providing precise control over the fluid flows and rapid mixing, microfluidic systems can be used to fabricate and engineer different types of DDSs with specific properties for efficient delivery of a wide range of drugs and genetic materials. This review discusses the principles of controlled rapid mixing that have been employed in different microfluidic strategies for producing DDSs. Moreover, the impact of the microfluidic device design and parameters on the type and properties of DDS formulations was assessed, and recent applications in drug and gene delivery were also considered.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom.,School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
11
|
Florczak A, Grzechowiak I, Deptuch T, Kucharczyk K, Kaminska A, Dams-Kozlowska H. Silk Particles as Carriers of Therapeutic Molecules for Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4946. [PMID: 33158060 PMCID: PMC7663281 DOI: 10.3390/ma13214946] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Although progress is observed in cancer treatment, this disease continues to be the second leading cause of death worldwide. The current understanding of cancer indicates that treating cancer should not be limited to killing cancer cells alone, but that the target is the complex tumor microenvironment (TME). The application of nanoparticle-based drug delivery systems (DDS) can not only target cancer cells and TME, but also simultaneously resolve the severe side effects of various cancer treatment approaches, leading to more effective, precise, and less invasive therapy. Nanoparticles based on proteins derived from silkworms' cocoons (like silk fibroin and sericins) and silk proteins from spiders (spidroins) are intensively explored not only in the oncology field. This natural-derived material offer biocompatibility, biodegradability, and simplicity of preparation methods. The protein-based material can be tailored for size, stability, drug loading/release kinetics, and functionalized with targeting ligands. This review summarizes the current status of drug delivery systems' development based on proteins derived from silk fibroin, sericins, and spidroins, which application is focused on systemic cancer treatment. The nanoparticles that deliver chemotherapeutics, nucleic acid-based therapeutics, natural-derived agents, therapeutic proteins or peptides, inorganic compounds, as well as photosensitive molecules, are introduced.
Collapse
Affiliation(s)
- Anna Florczak
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Inga Grzechowiak
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Tomasz Deptuch
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Kamil Kucharczyk
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Alicja Kaminska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
| | - Hanna Dams-Kozlowska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|