1
|
Ryu KM, Kim H, Woo J, Lim J, Kang CG, Kim SW, Kim T, Kim D. Enhancement of the bioactive compounds and biological activities of maca ( Lepidium meyenii) via solid-state fermentation with Rhizopus oligosporus. Food Sci Biotechnol 2024; 33:2585-2596. [PMID: 39144202 PMCID: PMC11319679 DOI: 10.1007/s10068-023-01508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 08/16/2024] Open
Abstract
Maca (Lepidium meyenii Walp) is renowned for its phytochemicals, including amino acids, saponins, and macamides, confer nutritional and medicinal benefits. This study analyzed the bioactive constituents of maca via solid-state fermentation with Rhizopus oligosporus for 0-15 days. After fermentation, the l-carnitine content reached 157.3 μg/g. A 93% increase in macamide B was recorded after 7-day fermentation. Total flavonoid and saponin contents increased by 88.2% and 110.3%, respectively. The fermentation process significantly enhanced the physicochemical attributes of maca; in particular, its water retention and cholesterol-binding capacities increased by 1.73- and 4.30-fold, respectively, compared with the non-fermented maca. Moreover, fermented maca exhibited stronger antioxidant and α-glucosidase-inhibiting effects than non-fermented maca. Finally, the neuroprotective effect of maca on HT-22 cells increased by 23% after 5-day fermentation. These findings demonstrate the potential of fermented maca as a novel ingredient for foods, beverages, and pharmaceuticals. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01508-6.
Collapse
Affiliation(s)
- Kyeong Min Ryu
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergence, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Jiho Woo
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Juho Lim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Choon Gil Kang
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060 Republic of Korea
| | - Seung Wook Kim
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060 Republic of Korea
| | - Taeyoon Kim
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergence, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergence, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
- Fervere Campus Corporation, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| |
Collapse
|
2
|
Dzanaeva LS, Wojdyła D, Fedorovych DV, Ruchala J, Dmytruk KV, Sibirny AA. Riboflavin overproduction on lignocellulose hydrolysate by the engineered yeast Candida famata. FEMS Yeast Res 2024; 24:foae020. [PMID: 39009031 PMCID: PMC11283204 DOI: 10.1093/femsyr/foae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.
Collapse
Affiliation(s)
- Ljubov S Dzanaeva
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St., 14/16, 79005 Lviv, Ukraine
| | - Dominik Wojdyła
- Institute of Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Dariya V Fedorovych
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St., 14/16, 79005 Lviv, Ukraine
| | - Justyna Ruchala
- Institute of Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Kostyantyn V Dmytruk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St., 14/16, 79005 Lviv, Ukraine
| | - Andriy A Sibirny
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St., 14/16, 79005 Lviv, Ukraine
- Institute of Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
3
|
Amaral YMS, de Castro RJS. Chicken viscera meal as substrate for the simultaneous production of antioxidant compounds and proteases by Aspergillus oryzae. Bioprocess Biosyst Eng 2023; 46:1777-1790. [PMID: 37919523 DOI: 10.1007/s00449-023-02934-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
The use of chicken waste can contribute to the development of new processes and obtaining molecules with high added value. An experimental design was applied to evaluate the effect of moisture, temperature, and inoculum size on the production of antioxidant peptides and proteases by A. oryzae IOC3999 through solid-state fermentation (SSF) of chicken viscera meal. As a result, the process conditions strongly influenced protease production and antioxidant activity of the fermented products. A global analysis of the results indicated that the most adequate conditions for SSF were (assay 9): 40% initial moisture, 30 °C as the incubation temperature, 5.05 × 106 spores/g as the inoculum size, and 48-h fermentation as the fermentation time. Under this condition, the antioxidant activities for the ABTS- and DPPH-radicals inhibition and ferric reducing antioxidant power (FRAP) methods were 376.16, 153.29, and 300.47 (µmol TE/g), respectively, and the protease production reached 428.22 U/g. Ultrafiltration of the crude extract obtained under optimized fermentation conditions was performed, and the fraction containing peptides with molecular mass lower than 3 kDa showed the highest antioxidant activity. The proteases were biochemically characterized and showed maximal activity at pH values ranging from 5.0 to 6.0 and a temperature of 50 °C. The thermodynamic parameters indicated that the process of thermal protease inactivation is not spontaneous (ΔG*d > 88.78 kJ/mol), increasing with temperature (ΔH*d 27.01-26.88 kJ/mol), and with reduced disorder in the system (ΔS*d < - 197.74 kJ/mol) probably caused by agglomeration of partially denatured enzymes.
Collapse
Affiliation(s)
- Yuri Matheus Silva Amaral
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil.
| | - Ruann Janser Soares de Castro
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Valorization of Biomasses from Energy Crops for the Discovery of Novel Thermophilic Glycoside Hydrolases through Metagenomic Analysis. Int J Mol Sci 2022; 23:ijms231810505. [PMID: 36142415 PMCID: PMC9505709 DOI: 10.3390/ijms231810505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing interest for environmentally friendly technologies is driving the transition from fossil-based economy to bioeconomy. A key enabler for circular bioeconomy is to valorize renewable biomasses as feedstock to extract high value-added chemicals. Within this transition the discovery and the use of robust biocatalysts to replace toxic chemical catalysts play a significant role as technology drivers. To meet both the demands, we performed microbial enrichments on two energy crops, used as low-cost feed for extremophilic consortia. A culture-dependent approach coupled to metagenomic analysis led to the discovery of more than 300 glycoside hydrolases and to characterize a new α-glucosidase from an unknown hyperthermophilic archaeon. Aglu1 demonstrated to be the most active archaeal GH31 on 4Np-α-Glc and it showed unexpected specificity vs. kojibiose, revealing to be a promising candidate for biotechnological applications such as the liquefaction/saccharification of starch.
Collapse
|
5
|
de Medeiros TDM, Dufossé L, Bicas JL. Lignocellulosic substrates as starting materials for the production of bioactive biopigments. Food Chem X 2022; 13:100223. [PMID: 35128384 PMCID: PMC8808281 DOI: 10.1016/j.fochx.2022.100223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
The search for sustainable processes is constantly increasing in the last years, so reusing, recycling and adding value to residues and by-products from agroindustry is a consolidated area of research. Particularly in the field of fermentation technology, the lignocellulosic substrates have been used to produce a diversity of chemicals, fuels and food additives. These residues or by-products are rich sources of carbon, which may be used to yield fermentescible sugars upon hydrolysis, but are usually inaccessible to enzyme and microbial attack. Therefore, pre-treatments (e.g. hydrolysis, steam explosion, biological pretreatment or others) are required prior to microbial action. Biopigments are added-value compounds that can be produced biotechnologically, including fermentation processes employing lignocellulosic substrates. These molecules are important not only for their coloring properties, but also for their biological activities. Therefore, this paper discusses the most recent and relevant processes for biopigment production using lignocellulosic substrates (solid-state fermentation) or their hydrolysates.
Collapse
Affiliation(s)
- Tiago Daniel Madureira de Medeiros
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80. Campinas-SP, Brazil
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CEDEX 9, F-97744 Saint-Denis, France
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80. Campinas-SP, Brazil
| |
Collapse
|
6
|
Lim J, Nguyen TTH, Pal K, Gil Kang C, Park C, Kim SW, Kim D. Phytochemical properties and functional characteristics of wild turmeric ( Curcuma aromatica) fermented with Rhizopus oligosporus. Food Chem X 2022; 13:100198. [PMID: 35499023 PMCID: PMC9039939 DOI: 10.1016/j.fochx.2021.100198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 12/03/2022] Open
Abstract
Wild turmeric (Curcuma aromatica) was fermented with R. oligosporus. Curcuminoid fermented for 5 days and phenolic compound of all fermented wild turmeric increased. The l-carnitine content of fermented wild turmeric was newly synthesized. The antioxidant activities were enhanced 1.47-fold after fermentation for 3 days. Anti-inflammatory, anti-melanogenic, and anti-obesity effects improved with fermentation.
This study investigated the effect of solid-state fermentation of wild turmeric (Curcuma aromatica) with Rhizopus oligosporus, a common fungus found in fermented soy tempeh, on phytochemical and biological properties. Ultra-performance liquid chromatography–tandem mass spectrometry showed that fermented wild turmeric has higher concentrations of curcumin, demethoxycurcumin, bisdemethoxycurcumin, phenolic compounds and total flavonoid-curcuminoid after fermentation for 1-, 3-, and 5-day relative to non-fermented turmeric. The l-carnitine content reached 242 µg g−1 extract after fermentation for 7-day. Wild turmeric had 1.47- and 2.25-fold increases in ORAC and FRAP, respectively, after 3-day fermentation. The inhibitory effects of fermented wild turmeric on lipid accumulation from 3T3-L1 cells, nitric oxide production from lipopolysaccharide-stimulated RAW264.7 murine macrophages, and melanin formation by B16F10 mouse melanoma cells with α-MSH increased 1.08-, 1.44-, and 1.52-fold, respectively, after 3-day fermentation. Based on these results, fermented wild turmeric product can be used as a functional ingredient in the cosmeceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Juho Lim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea
| | - Thi Thanh Hanh Nguyen
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Choon Gil Kang
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060, South Korea
| | - Chanho Park
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060, South Korea
| | - Seung Wook Kim
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060, South Korea
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea.,Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea
| |
Collapse
|
7
|
Chatterjee S, Venkata Mohan S. Fungal biorefinery for sustainable resource recovery from waste. BIORESOURCE TECHNOLOGY 2022; 345:126443. [PMID: 34852279 DOI: 10.1016/j.biortech.2021.126443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Depletion of natural resources and negative impact of fossil fuels on environment are becoming a global concern. The concept of biorefinery is one of the alternative platforms for the production of biofuels and chemicals. Valorisation of biological resources through complete utilization of waste, reusing secondary products and generating energy to power the process are the key principles of biorefinery. Agricultural residues and biogenic municipal solid wastes are getting importance as a potential feedstock for the generation of bioproducts. This communication reviews and highlights the scope of yeast and fungi as a potent candidate for the synthesis of gamut of bioproducts in an integrated approach addressing sustainability and circular bioeconomy. It also provides a close view on importance of microbes in biorefinery, feedstock pretreatment strategies for renewable sugar production, cultivation systems and yeast and fungi based products. Integrated closed loop approach towards multiple product generation with zero waste discharge is also discussed.
Collapse
Affiliation(s)
- Sulogna Chatterjee
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Sustainability in Heritage Wood Conservation: Challenges and Directions for Future Research. FORESTS 2021. [DOI: 10.3390/f13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conserving the world’s cultural and natural heritage is considered a key contributor to achieving the targets set out in the United Nation’s Sustainable Development Goals, yet how much attention do we pay to the methods we use to conserve and protect this heritage? With a specific focus on wooden objects of cultural heritage, this review discusses the current state-of-the-art in heritage conservation in terms of sustainability, sustainable alternatives to currently used consolidants, and new research directions that could lead to more sustainable consolidants in the future. Within each stage a thorough discussion of the synthesis mechanisms and/or extraction protocols, particularly for bio-based resources is provided, evaluating resource usage and environmental impact. This is intended to give the reader a better understanding of the overall sustainability of each different approach and better evaluate consolidant choices for a more sustainable approach. The challenges facing the development of sustainable consolidants and recent research that is likely to lead to highly sustainable new consolidant strategies in the future are also discussed. This review aims to contribute to the ongoing discussion of sustainable conservation and highlight the role that consolidants play in truly sustainable heritage conservation.
Collapse
|
9
|
Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, Choi Y. Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113268. [PMID: 34280865 DOI: 10.1016/j.jenvman.2021.113268] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The fossil fuel utilization adversely affected the environmental health due to the rising emission levels of greenhouse gases. Consequently, the challenges of climate change loaded great stress on renewable energy sources. It is noted that extreme consumption of fossil fuels increased the earth temperature by 1.9 °C that adversely influenced the life and biodiversity. Biorefinery is the sustainable process for the production of biofuels and other bio-products from biomass feedstock using different conversion technologies. Biofuel is an important component of renewable energy sources contributing to overall carbon-neutral energy system. Studies reported that on global scale, over 90% of petroleum goods could be produced from renewable resources by 2023, whereas, 33% chemicals, and 50% of the pharmaceutical market share is also expected to be bio-based. This study details the brief review of operation, development, application, limitations, future perspectives, circular bioeconomy, and life cycle assessment of biorefinery. The economic and environmental aspects of biofuels and biorefineries are briefly discussed. Lastly, considering the present challenges, the future perspectives of biofuels and biorefineries are highlighted.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon, Republic of Korea.
| | - Ayesha Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Kashif
- Department of Senior Health Care, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Muhammad Haq Nawaz
- Department of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Nafees Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Younggyun Choi
- Department of Environmental & IT Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Teleky BE, Vodnar DC. Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach. Polymers (Basel) 2021; 13:3574. [PMID: 34685333 PMCID: PMC8539575 DOI: 10.3390/polym13203574] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Intense research has been conducted to produce environmentally friendly biopolymers obtained from renewable feedstock to substitute fossil-based materials. This is an essential aspect for implementing the circular bioeconomy strategy, expressly declared by the European Commission in 2018 in terms of "repair, reuse, and recycling". Competent carbon-neutral alternatives are renewable biomass waste for chemical element production, with proficient recyclability properties. Itaconic acid (IA) is a valuable platform chemical integrated into the first 12 building block compounds the achievement of which is feasible from renewable biomass or bio-wastes (agricultural, food by-products, or municipal organic waste) in conformity with the US Department of Energy. IA is primarily obtained through fermentation with Aspergillus terreus, but nowadays several microorganisms are genetically engineered to produce this organic acid in high quantities and on different substrates. Given its trifunctional structure, IA allows the synthesis of various novel biopolymers, such as drug carriers, intelligent food packaging, antimicrobial biopolymers, hydrogels in water treatment and analysis, and superabsorbent polymers binding agents. In addition, IA shows antimicrobial, anti-inflammatory, and antitumor activity. Moreover, this biopolymer retains qualities like environmental effectiveness, biocompatibility, and sustainability. This manuscript aims to address the production of IA from renewable sources to create a sustainable circular economy in the future. Moreover, being an essential monomer in polymer synthesis it possesses a continuous provocation in the biopolymer chemistry domain and technologies, as defined in the present review.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Ouhichi R, Bougarech A, Kluge M, Pérocheau Arnaud S, Abid S, Abid M, Robert T. Camphoric acid as renewable cyclic building block for bio-based UV-curing polyhexylene itaconate. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Hydrophobic Deep Eutectic Solvents for the Recovery of Bio-Based Chemicals: Solid–Liquid Equilibria and Liquid–Liquid Extraction. Processes (Basel) 2021. [DOI: 10.3390/pr9050796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The solid–liquid equilibrium (SLE) behavior and liquid–liquid extraction (LLX) abilities of deep eutectic solvents (DESs) containing (a) thymol and L-menthol, and (b) trioctylphosphine oxide (TOPO) and L-menthol were evaluated. The distribution coefficients (KD) were determined for the solutes relevant for two biorefinery cases, including formic acid, levulinic acid, furfural, acetic acid, propionic acid, butyric acid, and L-lactic acid. Overall, for both cases, an increasing KD was observed for both DESs for acids increasing in size and thus hydrophobicity. Furfural, being the most hydrophobic, was seen to extract the highest KD (for DES (a) 14.2 ± 2.2 and (b) 4.1 ± 0.3), and the KD of lactic acid was small, independent of the DESs (DES (a) 0.5 ± 0.07 and DES (b) 0.4 ± 0.05). The KD of the acids for the TOPO and L-menthol DES were in similar ranges as for traditional TOPO-containing composite solvents, while for the thymol/L-menthol DES, in the absence of the Lewis base functionality, a smaller KD was observed. The selectivity of formic acid and levulinic acid separation was different for the two DESs investigated because of the acid–base interaction of the phosphine group. The thymol and L-menthol DES was selective towards levulinic acid (Sij = 9.3 ± 0.10, and the TOPO and L-menthol DES was selective towards FA (Sij = 2.1 ± 0.28).
Collapse
|
13
|
Rodríguez A, Espinosa E. Special Issue "Lignocellulosic Biomass". Molecules 2021; 26:molecules26051483. [PMID: 33803258 PMCID: PMC7967196 DOI: 10.3390/molecules26051483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
|
14
|
Vassileva M, Malusá E, Eichler-Löbermann B, Vassilev N. Aspegillus terreus: From Soil to Industry and Back. Microorganisms 2020; 8:microorganisms8111655. [PMID: 33113865 PMCID: PMC7692665 DOI: 10.3390/microorganisms8111655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Aspergillus terreus is an important saprophytic filamentous fungus that can be found in soils. Like many other soil microorganisms, A. terreus demonstrates multiple functions and offers various important metabolites, which can be used in different fields of human activity. The first application of A. terreus on an industrial level is the production of itaconic acid, which is now considered as one of the most important bioproducts in the Green Chemistry field. The general schemes for itaconic acid production have been studied, but in this mini-review some lines of future research are presented based on analysis of the published results. A. terreus is also intensively studied for its biocontrol activity and plant growth-promoting effect. However, this microorganism is also known to infect important crops such as, amongst others, rice, wheat, potato, sugar cane, maize, and soybean. It was suggested, however, that the balance between positive vs. negative effects is dependent on the soil-plant-inoculant dose system. A. terreus has frequently been described as an important human pathogen. Therefore, its safety manipulation in biotechnological processes for the production of itaconic acid and some drugs and its use in soil-plant systems should be carefully assessed. Some suggestions in this direction are discussed, particularly concerning the uses in crop production.
Collapse
Affiliation(s)
- Maria Vassileva
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain;
| | - Eligio Malusá
- Research Institute of Horticulture, 96-101 Skierniewice, Poland;
- CREA—Research Centre for Viticulture and Enology, via XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Bettina Eichler-Löbermann
- Institute of Land Use, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18051 Rostock, Germany;
| | - Nikolay Vassilev
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain;
- Institute of Biotechnology, University of Granada, 18071 Granada, Spain
- Correspondence:
| |
Collapse
|