1
|
Krebs L, Pouliot Y, Doyen A, Venema K, Brisson G. Effect of reverse osmosis and ultra-high-pressure homogenization on the composition and microstructure of sweet buttermilk. J Dairy Sci 2023; 106:1596-1610. [PMID: 36586799 DOI: 10.3168/jds.2022-22483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022]
Abstract
Buttermilk (BM), the by-product of butter making, is similar to skim milk (SM) composition. However, it is currently undervalued in dairy processing because it is responsible for texture defects (e.g., crumbliness, decreased firmness) in cheese and yogurt. One possible way of improving the incorporation of BM into dairy products is by the use of technological pretreatments such as membrane filtration and homogenization. The study aimed at characterizing the effect of preconcentration by reverse osmosis (RO) and single-pass ultra-high-pressure homogenization (UHPH) on the composition and microstructure of sweet BM to modify its techno-functional properties (e.g., protein gel formation, syneresis, firmness). The BM and RO BM were treated at 0, 15, 150, and 300 MPa. Pressure-treated and control BM and RO BM were ultracentrifuged to fractionate them into the following 3 fractions: a supernatant soluble fraction (top layer), a colloidal fraction consisting of a cloudy layer (middle layer), and a high-density pellet (bottom layer). Compositional changes in the soluble fraction [lipid, phospholipid (PL), protein, and salt], as well as its protein profile by PAGE analysis, were determined. Modifications in particle size distribution upon UHPH were monitored by laser diffraction in the presence and absence of sodium citrate to dissociate the casein (CN) micelles. Microstructural changes in pressure-treated and non-pressure-treated BM and RO BM particles were monitored by confocal laser scanning microscopy. Particle size analysis showed that UHPH treatment significantly decreased the size of the milk fat globule membrane fragments in BM and RO BM. Also, pressure treatment at 300 MPa led to a significant increase in the recovery of total lipids, CN, calcium, and phosphate in the BM soluble fraction (top layer) following ultracentrifugation. However, PL were primarily concentrated in the pellet cloud (middle layer), located above the pellet in BM concentrated by RO. In contrast, PL were evenly distributed between soluble and colloidal phases of BM. This study provides insight into the modifications of sweet BM constituents induced by RO and UHPH from a compositional and structural perspective.
Collapse
Affiliation(s)
- L Krebs
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Quebec, G1V 0A6, Canada
| | - Y Pouliot
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Quebec, G1V 0A6, Canada
| | - A Doyen
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Quebec, G1V 0A6, Canada
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Faculty of Science and Engineering, Maastricht University-Venlo, 5928 SZ, the Netherlands
| | - G Brisson
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Quebec, G1V 0A6, Canada.
| |
Collapse
|
2
|
Gu L, Liu Y, Zhang W, Li J, Chang C, Su Y, Yang Y. Novel extraction technologies and potential applications of egg yolk proteins. Food Sci Biotechnol 2022; 32:121-133. [PMID: 36590017 PMCID: PMC9795146 DOI: 10.1007/s10068-022-01209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
The high nutritional value and diverse functional properties of egg yolk proteins have led to its widespread use in the fields of food, medicine, and cosmetics. Various extraction methods have been reported to obtain the proteins from egg yolk, however, their utilization is limited due to the relatively low extraction efficiency and/or toxic solvents involved. Several simpler and greener technologies, especially physical fields (ultrasound), have been successfully developed to improve the extraction efficiency. The egg yolk proteins may exert multiple biological activities, enabling them to be a promising tool in improve human health and wellbeing, such as anti-obesity, anti-atherosclerosis, anti-osteoporosis, diagnosis and therapy for SARS-CoV-2 infections. This article summarizes the novel extraction technologies and latest applications of the egg yolk proteins in the recent 5 years, which should stimulate their utilization as health-promoting functional ingredients in foods and other commercial products.
Collapse
Affiliation(s)
- Luping Gu
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shanxi Normal University, Xi’an, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Junhua Li
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Cuihua Chang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Yujie Su
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yanjun Yang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| |
Collapse
|
3
|
Zhang H, Zhao X, Chen X, Xu X. Thoroughly review the recent progresses in improving O/W interfacial properties of proteins through various strategies. Front Nutr 2022; 9:1043809. [DOI: 10.3389/fnut.2022.1043809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Along with the future food market developing world widely, the personalized nutrition and rational function food design are found to be urgently attracted. Oil in a water (O/W) emulsion system has an excellent ability to maintain nutraceuticals and thus plays a promising role in producing future functional foods. Understanding the interfacial related mechanisms involved are essential for improving the quality of food products. Protein can effectively reduce interfacial tension and stable immiscible phases. The interfacial properties of proteins directly affect the emulsion qualities, which have gradually become a prospective topic. This review will first briefly discuss the interfacial-related fundamental factors of proteins. Next, the paper thoroughly overviewed current physical and chemical strategies tailored to improving the interfacial and emulsion properties of proteins. To be summarized, a higher flexibility could allow protein to be more easily unfolded and adsorbed onto the interface but could also possibly form a softer interfacial film. Several physical strategies, such as thermal, ultrasound and especially high-pressure homogenization are well applied to improve the interfacial properties. The interfacial behavior is also altered by various green chemical strategies, such as pH adjustment, covalent modification, and low molecular weight (LMW) surfactant addition. These strategies upgraded emulsion properties by increasing adsorption load, accelerating diffusion and adsorption rate, associated with lowering interfacial tension, and promoting interfacial protein interactions. Future researches targeted at elucidating interfacial-bulk protein interactions, unraveling interfacial behavior through in silico tools, exploring connection between interfacial-industrial processing properties, and clarifying the interfacial-sensory-digestive relationships of O/W emulsions is needed to develop emulsion applications.
Collapse
|
4
|
Impact of Ultra-High Pressure Homogenization on the Structural Properties of Egg Yolk Granule. Foods 2022; 11:foods11040512. [PMID: 35205989 PMCID: PMC8871291 DOI: 10.3390/foods11040512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Ultra-high pressure homogenization (UHPH) is a promising method for destabilizing and potentially improving the techno-functionality of the egg yolk granule. This study’s objectives were to determine the impact of pressure level (50, 175 and 300 MPa) and number of passes (1 and 4) on the physico-chemical and structural properties of egg yolk granule and its subsequent fractions. UHPH induced restructuration of the granule through the formation of a large protein network, without impacting the proximate composition and protein profile in a single pass of up to 300 MPa. In addition, UHPH reduced the particle size distribution up to 175 MPa, to eventually form larger particles through enhanced protein–protein interactions at 300 MPa. Phosvitin, apovitellenin and apolipoprotein-B were specifically involved in these interactions. Overall, egg yolk granule remains highly stable during UHPH treatment. However, more investigations are needed to characterize the resulting protein network and to evaluate the techno-functional properties of UHPH-treated granule.
Collapse
|
5
|
Marcet I, Sáez-Orviz S, Rendueles M, Díaz M. Egg yolk granules and phosvitin. Recent advances in food technology and applications. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Yilmaz B, Ağagündüz D. Bioactivities of hen's egg yolk phosvitin and its functional phosphopeptides in food industry and health. J Food Sci 2020; 85:2969-2976. [PMID: 32966601 DOI: 10.1111/1750-3841.15447] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/26/2020] [Accepted: 08/14/2020] [Indexed: 11/28/2022]
Abstract
Phosvitin, one of the most noteworthy bioactive components of hen egg yolk, is an amphiphilic protein that stands out with its unique composition and functionality in the food industry and health. Phosvitin consists of 4% of egg yolk dry matter and 11% of egg yolk proteins. It is considered as the most phosphorylated protein with 10% phosphorus. Besides, some potential novel phosphopeptides containing clusters of phosphoserines can be derived from hen's egg yolk phosvitin. Phosvitin, which has many functional features thanks to its unique structure, is known primarily for its metal bonds binding (iron, calcium, etc.) feature. On the other hand, its phosphopeptides may increase the bioavailability of metals compared to phosvitin. Although this feature of phosvitin may partially decrease the bioavailability of especially iron in the egg, it allows the phosvitin to have many bioactivities in the food industry and health. Lipid oxidation, which is a serious problem in the food industry, can be inhibited by adding phosvitin and its derived phosphopeptides to the food production chain via inhibiting bivalent iron. Because phosvitin is an amphiphilic protein capable of chelating, it also shows potential antibacterial effects against the Gram-negative bacteria. Moreover, the literature has recently been attempting to define the promising relationship between phosvitin and its phosphopeptides and plenty of health-promoting activities such as immune-enhancing, melanogenesis inhibitor, anti-ageing, and anticancer. In this review, current information on the hen's egg yolk phosvitin and its phosphopeptides and their bioactivities in the food industry and health are discussed and some future directions are given.
Collapse
Affiliation(s)
- Birsen Yilmaz
- Faculty of Health Sciences, Gazi University, Department of Nutrition and Dietetics, Beşevler, Ankara, 06560, Turkey.,Faculty of Health Sciences, Çukurova University, Department of Nutrition and Dietetics, Sarıçam, Adana, Turkey
| | - Duygu Ağagündüz
- Faculty of Health Sciences, Gazi University, Department of Nutrition and Dietetics, Beşevler, Ankara, 06560, Turkey
| |
Collapse
|