1
|
Klika K, Han J, Busse MS, Soloshonok VA, Javahershenas R, Vanhaecke F, Makarem A. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS): An Emerging Tool in Radiopharmaceutical Science. J Am Chem Soc 2024; 146:30717-30727. [PMID: 39478417 PMCID: PMC11565647 DOI: 10.1021/jacs.4c12254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/14/2024]
Abstract
Although radioactive experiments are necessary in radiopharmaceutical drug discovery and theranostic cancer research, they are expensive, require special facilities, and face certain restrictions. Thus, finding techniques not involving radioactivity is highly beneficial for minimizing these disadvantages in such research. In this regard, methods using inductively coupled plasma-mass spectrometry (ICP-MS) have emerged as viable alternatives to traditional radioactive approaches. Despite its potential, practical applications of ICP-MS in radiopharmaceutical cancer research have only emerged in recent years. This Perspective focuses on the development and implementation of nonradioactive ICP-MS-based assays in radiopharmaceutical research and aims to inspire future research efforts in this area.
Collapse
Affiliation(s)
- Karel
D. Klika
- Molecular
Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jianlin Han
- College
of Chemical Engineering, Nanjing Forestry
University, 210037 Nanjing, China
| | - Marvin S. Busse
- Institute
of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, University of the
Basque Country, 20018 San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ramin Javahershenas
- Department
of Organic Chemistry, Faculty of Chemistry, Urmia University, 57179-44514 Urmia, Iran
| | - Frank Vanhaecke
- Atomic
and Mass Spectrometry − A&MS Research Unit, Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Ata Makarem
- Institute
of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
2
|
Lamba M, Singh PR, Bandyopadhyay A, Goswami A. Synthetic 18F labeled biomolecules that are selective and promising for PET imaging: major advances and applications. RSC Med Chem 2024; 15:1899-1920. [PMID: 38911154 PMCID: PMC11187557 DOI: 10.1039/d4md00033a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
The concept of positron emission tomography (PET) based imaging was developed more than 40 years ago. It has been a widely adopted technique for detecting and staging numerous diseases in clinical settings, particularly cancer, neuro- and cardio-diseases. Here, we reviewed the evolution of PET and its advantages over other imaging modalities in clinical settings. Primarily, this review discusses recent advances in the synthesis of 18F radiolabeled biomolecules in light of the widely accepted performance for effective PET. The discussion particularly emphasizes the 18F-labeling chemistry of carbohydrates, lipids, amino acids, oligonucleotides, peptides, and protein molecules, which have shown promise for PET imaging in recent decades. In addition, we have deliberated on how 18F-labeled biomolecules enable the detection of metabolic changes at the cellular level and the selective imaging of gross anatomical localization via PET imaging. In the end, the review discusses the future perspective of PET imaging to control disease in clinical settings. We firmly believe that collaborative multidisciplinary research will further widen the comprehensive applications of PET approaches in the clinical management of cancer and other pathological outcomes.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Prasoon Raj Singh
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Anupam Bandyopadhyay
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| |
Collapse
|
3
|
Zierke MA, Rangger C, Samadikhah K, Panzer M, Dichtl S, Hörmann N, Wilflingseder D, Schmid AM, Haubner R. [ 68Ga]Ga-NODAGA-TriGalactan, a low molecular weight tracer for the non-invasive imaging of the functional liver reserve. EJNMMI Radiopharm Chem 2024; 9:41. [PMID: 38750246 PMCID: PMC11096148 DOI: 10.1186/s41181-024-00271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Determination of the functional liver mass is important in a variety of clinical settings including liver surgery and transplantation. [99mTc]Tc-diethylenetriamine-pentaacetic acid galactosyl human serum albumin (99mTc-GSA) is a radiotracer targeting the asialoglycoprotein receptor (ASGR) and is routinely used in Japan for this purpose. Here we describe the development and evaluation of [68Ga]Ga-NODAGA-TriGalactan a low molecular weight PET-tracer targeting this structure. RESULTS For synthesis TRIS as branching unit and NODAGA as chelator for labelling with [68Ga]Ga are included. Three galactose moieties are conjugated via a click chemistry approach resulting in the desired labelling precursor.68Ga-labelling could be accomplished in high radiochemical yield and purity. [68Ga]Ga-NODAGA-TriGalactan is very hydrophilic and revealed high plasma stability and low plasma protein binding. Fluorescence imaging showed binding on ASGR-positive organoids and the IC50-value was in the nanomolar range. Most importantly, both biodistribution as well as animal imaging studies using normal mice demonstrated high liver uptake with rapid elimination from all other organs leading to even higher liver-to-background ratios as found for 99mTc-GSA. CONCLUSION [68Ga]Ga-NODAGA-TriGalactan shows high in vitro stability and selectively binds to the ASGR allowing imaging of the functional liver mass with high contrast. Thus, our first generation compound resulted already in an alternative to 99mTc-GSA for imaging the functional liver reserve and might allow the broader use of this imaging technique.
Collapse
Affiliation(s)
- Maximilian A Zierke
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstr. 35, Innsbruck, 6020, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstr. 35, Innsbruck, 6020, Austria
| | - Kimia Samadikhah
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 73076, Tübingen, Germany
| | - Marlene Panzer
- Department of Internal Medicine I, Medical University Innsbruck, Anichstr. 35, Innsbruck, 6020, Austria
| | - Stefanie Dichtl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstr. 41, Innsbruck, 6020, Austria
| | - Nikolas Hörmann
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain, 80-82, Innsbruck, 6020, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstr. 41, Innsbruck, 6020, Austria
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 73076, Tübingen, Germany
| | - Roland Haubner
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstr. 35, Innsbruck, 6020, Austria.
| |
Collapse
|
4
|
Koley M, Han J, Soloshonok VA, Mojumder S, Javahershenas R, Makarem A. Latest developments in coumarin-based anticancer agents: mechanism of action and structure-activity relationship studies. RSC Med Chem 2024; 15:10-54. [PMID: 38283214 PMCID: PMC10809357 DOI: 10.1039/d3md00511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Many researchers around the world are working on the development of novel anticancer drugs with different mechanisms of action. In this case, coumarin is a highly promising pharmacophore for the development of novel anticancer drugs. Besides, the hybridization of this moiety with other anticancer pharmacophores has emerged as a potent breakthrough in the treatment of cancer to decrease its side effects and increase its efficiency. This review aims to provide a comprehensive overview of the recent development of coumarin derivatives and their application as novel anticancer drugs. Herein, we highlight and describe the largest number of research works reported in this field from 2015 to August 2023, along with their mechanisms of action and structure-activity relationship studies, making this review different from the other review articles published on this topic to date.
Collapse
Affiliation(s)
- Manankar Koley
- CSIR-Central Glass & Ceramic Research Institute Kolkata India
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University Nanjing China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | | | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg Hamburg Germany
| |
Collapse
|
5
|
Radiochemistry with {Al18F}2+: Current status and optimization perspectives for efficient radiofluorination by complexation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers (Basel) 2021; 14:cancers14010074. [PMID: 35008238 PMCID: PMC8750680 DOI: 10.3390/cancers14010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroimaging has transformed the way brain tumors are diagnosed and treated. Although different non-invasive modalities provide very helpful information, in some situations, they present a limited value. By merging the specificity of antibodies with the resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry”, like a “virtual biopsy”. This review provides and focuses on immuno-PET applications and future perspectives of this promising imaging approach for glioblastoma. Abstract Neuroimaging has transformed neuro-oncology and the way that glioblastoma is diagnosed and treated. Magnetic Resonance Imaging (MRI) is the most widely used non-invasive technique in the primary diagnosis of glioblastoma. Although MRI provides very powerful anatomical information, it has proven to be of limited value for diagnosing glioblastomas in some situations. The final diagnosis requires a brain biopsy that may not depict the high intratumoral heterogeneity present in this tumor type. The revolution in “cancer-omics” is transforming the molecular classification of gliomas. However, many of the clinically relevant alterations revealed by these studies have not yet been integrated into the clinical management of patients, in part due to the lack of non-invasive biomarker-based imaging tools. An innovative option for biomarker identification in vivo is termed “immunotargeted imaging”. By merging the high target specificity of antibodies with the high spatial resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry” in patients. This review provides the state of the art of immuno-PET applications and future perspectives on this imaging approach for glioblastoma.
Collapse
|
8
|
Archibald SJ, Allott L. The aluminium-[ 18F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules. EJNMMI Radiopharm Chem 2021; 6:30. [PMID: 34436693 PMCID: PMC8390636 DOI: 10.1186/s41181-021-00141-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
The aluminium-[18F]fluoride ([18F]AlF) radiolabelling method combines the favourable decay characteristics of fluorine-18 with the convenience and familiarity of metal-based radiochemistry and has been used to parallel gallium-68 radiopharmaceutical developments. As such, the [18F]AlF method is popular and widely implemented in the development of radiopharmaceuticals for the clinic. In this review, we capture the current status of [18F]AlF-based technology and reflect upon its impact on nuclear medicine, as well as offering our perspective on what the future holds for this unique radiolabelling method.
Collapse
Affiliation(s)
- Stephen J Archibald
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK
| | - Louis Allott
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK.
| |
Collapse
|
9
|
Chomet M, van Dongen GAMS, Vugts DJ. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem 2021; 32:1315-1330. [PMID: 33974403 PMCID: PMC8299458 DOI: 10.1021/acs.bioconjchem.1c00136] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Inert
and stable radiolabeling of monoclonal antibodies (mAb),
antibody fragments, or antibody mimetics with radiometals is a prerequisite
for immuno-PET. While radiolabeling is preferably fast, mild, efficient,
and reproducible, especially when applied for human use in a current
Good Manufacturing Practice compliant way, it is crucial that the
obtained radioimmunoconjugate is stable and shows preserved immunoreactivity
and in vivo behavior. Radiometals and chelators have
extensively been evaluated to come to the most ideal radiometal–chelator
pair for each type of antibody derivative. Although PET imaging of
antibodies is a relatively recent tool, applications with 89Zr, 64Cu, and 68Ga have greatly increased in
recent years, especially in the clinical setting, while other less
common radionuclides such as 52Mn, 86Y, 66Ga, and 44Sc, but also 18F as in [18F]AlF are emerging promising candidates for the radiolabeling
of antibodies. This review presents a state of the art overview of
the practical aspects of radiolabeling of antibodies, ranging from
fast kinetic affibodies and nanobodies to slow kinetic intact mAbs.
Herein, we focus on the most common approach which consists of first
modification of the antibody with a chelator, and after eventual storage
of the premodified molecule, radiolabeling as a second step. Other
approaches are possible but have been excluded from this review. The
review includes recent and representative examples from the literature
highlighting which radiometal–chelator–antibody combinations
are the most successful for in vivo application.
Collapse
Affiliation(s)
- Marion Chomet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
10
|
Klika KD, Da Pieve C, Kopka K, Smith G, Makarem A. Synthesis and application of a thiol-reactive HBED-type chelator for development of easy-to-produce Ga-radiopharmaceutical kits and imaging probes. Org Biomol Chem 2021; 19:1722-1726. [PMID: 33527964 DOI: 10.1039/d0ob02513e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In radiopharmaceutical syntheses, maleimide is commonly used for linking thiol-bearing bioactive molecules to metal-complexing ligands (chelators). However, due to instability of the resulting linkage, phenyloxadiazolyl methylsulfone (PODS) was developed as an alternative to maleimide. This coupling strategy has never been attempted with HBED which is a powerful chelator for gallium-radiolabeling especially at ambient temperature. Here we present HBED-CC-PODS as a bifunctional chelator scaffold for the site-selective conjugation of thiol-bearing vectors and [68Ga]Ga-radiolabeling.
Collapse
Affiliation(s)
- Karel D Klika
- German Cancer Research Center (DKFZ), Molecular Structure Analysis, INF 280, 69120 Heidelberg, Germany
| | - Chiara Da Pieve
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, 123 Old Brompton Road, London SW7 3RP, UK
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Graham Smith
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, 123 Old Brompton Road, London SW7 3RP, UK
| | - Ata Makarem
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, INF 280, 69120 Heidelberg, Germany
| |
Collapse
|