1
|
Pierguidi L, Cecchi L, Dinnella C, Zanoni B, Spinelli S, Migliorini M, Monteleone E. Markers of sensory dynamics in phenols-rich virgin olive oils under optimal storage conditions. Food Res Int 2024; 187:114438. [PMID: 38763685 DOI: 10.1016/j.foodres.2024.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/13/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Early changes in sensory quality of phenols-rich virgin olive oil (VOO) and their relationship with the chemical changes are less studied in the literature. Therefore, the objective of this study was to propose a predictive model of dynamics of sensory changes based on specific chemical markers. The evolution of the sensory quality of phenol-rich VOOs from Tuscan cultivars stored under optimal storage conditions (i.e., absence of light, no O2 exposure, low temperature) was investigated using a multi-step methodological approach combining sensory (official sensory analysis (so-called Panel Test), Descriptive Analysis and Temporal Dominance of Sensation) and chemical measurements. The sensory map from descriptive data was related to the phenolic and volatile profiles, measured using HPLC-DAD and HS-SPME-GC-MS, respectively. A predictive model of the sensory changes over storage based on chemical compounds was developed. Results showed that very early changes involving phenolic and volatile compounds profiles occur in VOOs stored under optimal storage conditions, which turn in changes in sensory properties evaluated by the official panel test, the descriptive analysis and the temporal dominance of sensation. Furthermore, a chemical marker of sensory dynamics of oils during storage was identified as the ratio between two groups of secoiridoids. The proposed model, supported by the mentioned chemical marker, has the potential of improving the control of sensory changes in phenols-rich virgin olive oils during storage in optimal conditions.
Collapse
Affiliation(s)
- Lapo Pierguidi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy
| | - Lorenzo Cecchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy.
| | - Caterina Dinnella
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy
| | - Bruno Zanoni
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy
| | - Sara Spinelli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy
| | - Marzia Migliorini
- Carapelli Firenze S.p.A., Via Leonardo da Vinci 31, Tavarnelle Val di Pesa, 50028, Firenze, Italy
| | - Erminio Monteleone
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy
| |
Collapse
|
2
|
Lamas S, Ruano D, Dias F, Barreiro F, Pereira JA, Peres AM, Rodrigues N. Application of the FTIR technique as a non-invasive tool to discriminate Portuguese olive oils with Protected Designation of Origin. Chem Biodivers 2024; 21:e202301629. [PMID: 38109266 DOI: 10.1002/cbdv.202301629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/20/2023]
Abstract
Three Portuguese olive oils with PDO ('Azeite do Alentejo Interior', 'Azeites da Beira Interior' and 'Azeite de Trás-os-Montes') were studied considering their physicochemical quality, antioxidant capacity, oxidative stability, total phenols content, gustatory sensory sensations and Fourier transform infrared (FTIR) spectra. All oils fulfilled the legal thresholds of EVOOs and the PDO's specifications. Olive oils from 'Azeite da Beira Interior' and 'Azeite de Trás-os-Montes' showed greater total phenols contents and antioxidant capacities, while 'Azeites da Beira Interior' presented higher oxidative stabilities. Linear discriminant models were developed using FTIR spectra (transmittance and the 1st and 2nd derivatives), allowing the correct identification of the oils' PDO (100 % sensitivity and specificity, repeated K-fold-CV). This study also revealed that multiple linear regression models, based on FTIR transmittance data, could predict the sweet, bitter, and pungent intensities of the PDO oils (R2 ≥0.979±0.016; RMSE≤0.26±0.05, repeated K-fold-CV). This demonstrates the potential of using FTIR as a non-destructive technique for authenticating oils with PDO.
Collapse
Affiliation(s)
- Sandra Lamas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| | - Daniela Ruano
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| | - Francisco Dias
- Centro de Investigação, Desenvolvimento e Inovação em Turismo (CiTUR), Escola Superior de Turismo e Tecnologia do Mar, Instituto Politécnico de Leiria, Rua General Norton de Matos, Apartado 4133, 2411-901, Leiria, Portugal
| | - Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| | - António M Peres
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa, Apolónia, Bragança, Portugal
| |
Collapse
|
3
|
Ríos-Reina R, Aparicio-Ruiz R, Morales MT, García-González DL. Contribution of specific volatile markers to green and ripe fruity attributes in extra virgin olive oils studied with three analytical methods. Food Chem 2023; 399:133942. [DOI: 10.1016/j.foodchem.2022.133942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
|
4
|
A study of the dynamic changes of stability taking place during virgin olive oil storage period examined by mesh cell-FTIR spectroscopy. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Effect of freezing, fast-freezing by liquid nitrogen or refrigeration to preserve premium extra virgin olive oil during storage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractDuring storage, premium extra virgin olive oils (PEVOO), which are oils of exceptional sensory quality, may lose the organoleptic characteristics that define them. This study assessed the effect of applying modified atmospheres and low temperatures (refrigeration and freezing) on the quality of 4 PEVOO for 24 months. Also, the effect of two freezing methods was studied (in the freezer at − 20 °C and in a bath of liquid nitrogen), along with the impact of freezing on the quality of the oils after thawing and storing at room temperature. Official quality parameters, organoleptic assessment, phenolic compounds, volatile compounds and oxidative stability index were measured periodically. While no significant effect of headspace composition was found, the oils stored at − 20 °C maintained their initial quality better than the oils stored at room temperature. Physicochemical quality parameters remained unchanged throughout the 24 months at − 20 °C. Polar phenolic and volatile compounds associated with green and fruity aromas were better preserved at − 20 °C, which translated into a minimum change in the sensory profile of the oils. While no significant difference was observed regarding oxidative parameters, freezing at − 20 °C maintained the initial volatile and sensory profile of the oils better than freezing with liquid nitrogen. Lastly, quality of thawed oils showed no significant differences compared to control oils during storage at room temperature. In conclusion, storage at − 20 °C maintains the quality of PEVOO, especially their sensory profile, and does not compromise their quality after thawing.
Collapse
|
6
|
Jing Q, Huang X, Lu C, Di D. Identification of characteristic flavour compounds and quality analysis in extra virgin olive oil based on
HS‐GC‐IMS. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Quan Jing
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin‐Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Cong‐Hui Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Duo‐Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Aparicio-Ruiz R, Tena N, García-González DL. An International Survey on Olive Oils Quality and Traceability: Opinions from the Involved Actors. Foods 2022; 11:foods11071045. [PMID: 35407132 PMCID: PMC8997808 DOI: 10.3390/foods11071045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
A survey was launched to understand the current problems and sensitivities of the olive oil market through a series of questions clustered around topics related to quality, traceability, regulation, standard methods and other issues. The questions were selected after a series of interviews with different actors to identify those aspects where some disagreement or different points of view may exist. These questions were grouped in topics such as geographical traceability, consumer perception and quality management. The survey was addressed to eight different olive oil actors independently: producers, retailers, importers, exporters, analysts, workers at regulatory bodies, and consumers. Approximately half of the respondents (67.0% for consumers and 56.0% for the rest of olive oil actors) claimed to understand the importance of the protected designation of origin. In fact, the traceability objectives that were selected as the most relevant were those related with geographical traceability (19.3%) followed by the detection of adulteration (15.6%). Most of the respondents (80%) would agree to share data for a common database; however, some concerns exist about the use of these data and the issue of paying to have access to this database. The respondents mostly expressed an affirmative answer concerning the efficiency of panel test (74%) and a negative answer (90%) concerning the proposal of removing from regulation, although 42% agree with their revision for improvement. The opinions on “best before” date and their relationship with quality and the willingness to apply non-targeted methods were also surveyed.
Collapse
Affiliation(s)
- Ramón Aparicio-Ruiz
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, Prof. García González, 2, 41012 Seville, Spain; (R.A.-R.); (N.T.)
| | - Noelia Tena
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, Prof. García González, 2, 41012 Seville, Spain; (R.A.-R.); (N.T.)
| | - Diego L. García-González
- Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
- Correspondence: ; Tel.: +34-9-5461-1550
| |
Collapse
|
8
|
Díaz-Montaña EJ, Barbero-López M, Aparicio-Ruiz R, Morales MT. Does A Flavoured Extra Virgin Olive Oil Have Higher Antioxidant Properties? Antioxidants (Basel) 2022; 11:antiox11030550. [PMID: 35326198 PMCID: PMC8944749 DOI: 10.3390/antiox11030550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Extra virgin olive oil is highly appreciated worldwide for its healthy and organoleptic properties. From the variety of compounds present in the oil, phenols stand out, not only for producing the bitter-pungent perception but also for their antioxidant properties, which contribute to human health protection. The addition of plants can change the phenolic profile due to a migration of plant antioxidants to the oil. The aim of this work was to study the evolution of the oxidative process of extra virgin olive oil under mild storage conditions for 8 months, monitoring the individual content of 15 phenols by High Performance Liquid Chromatography (HPLC) and the changes of the phenolic profile of the non-flavoured oil compared with the same flavoured (rosemary and basil) oil. The oxidative alteration was more marked in virgin than in flavoured oils, where it happened slowly. Throughout storage, the behaviour of the phenols varied, resulting in a decrease in their concentration, except in the case of tyrosol and hydroxytyrosol. The addition of plants had an antioxidant effect, slowing down the oxidative process, which prolongs the shelf life of the flavoured oil compared to the unflavoured oil. Furthermore, multivariate statistical analyses allowed the classification and differentiation of the different samples.
Collapse
|
9
|
Demisli S, Chatzidaki MD, Xenakis A, Papadimitriou V. Recent progress on nano-carriers fabrication for food applications with special reference to olive oil-based systems. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Gutiérrez-luna K, Ansorena D, Astiasarán I. Use of hydrocolloids and vegetable oils for the formulation of a butter replacer: Optimization and oxidative stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Volatile-Olfactory Profiles of cv. Arbequina Olive Oils Extracted without/with Olive Leaves Addition and Their Discrimination Using an Electronic Nose. J CHEM-NY 2021. [DOI: 10.1155/2021/5058522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Oils from cv. Arbequina were industrially extracted together with olive leaves of cv. Arbequina or Santulhana (1%, w/w), and their olfactory and volatile profiles were compared to those extracted without leaves addition (control). The leaves incorporation resulted in green fruity oils with fresh herbs and cabbage olfactory notes, while control oils showed a ripe fruity sensation with banana, apple, and dry hay grass notes. In all oils, total volatile contents varied from 57.5 to 65.5 mg/kg (internal standard equivalents), being aldehydes followed by esters, hydrocarbons, and alcohols the most abundant classes. No differences in the number of volatiles were observed. The incorporation of cv. Arbequina or Santulhana leaves significantly reduced the total content of alcohols and esters (minus 37–56% and 10–13%, respectively). Contrary, cv. Arbequina leaves did not influence the total content of aldehydes or hydrocarbons, while cv. Santulhana leaves promoted a significant increase (plus 49 and 10%, respectively). Thus, a leaf-cultivar dependency was observed, tentatively attributed to enzymatic differences related to the lipoxygenase pathway. Olfactory or volatile profiles allowed the successful unsupervised differentiation of the three types of studied cv. Arbequina oils. Finally, a lab-made electronic nose was applied to allow the nondestructive discrimination of cv. Arbequina oils extracted with or without the incorporation of olive leaves (100% and 99 ± 5% of correct classifications for leave-one-out and repeated K-fold cross-validation variants), being a practical tool for ensuring the label correctness if future commercialization is envisaged. Moreover, this finding also strengthened that olive oils extracted with or without olive leaves incorporation possessed quite different olfactory patterns, which also depended on the cultivar of the olive leaves.
Collapse
|
12
|
Lamas S, Rodrigues N, Fernandes IP, Barreiro MF, Pereira JA, Peres AM. Fourier transform infrared spectroscopy-chemometric approach as a non-destructive olive cultivar tool for discriminating Portuguese monovarietal olive oils. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Caipo L, Sandoval A, Sepúlveda B, Fuentes E, Valenzuela R, Metherel AH, Romero N. Effect of Storage Conditions on the Quality of Arbequina Extra Virgin Olive Oil and the Impact on the Composition of Flavor-Related Compounds (Phenols and Volatiles). Foods 2021; 10:foods10092161. [PMID: 34574270 PMCID: PMC8466157 DOI: 10.3390/foods10092161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/18/2023] Open
Abstract
Commercialization of extra virgin olive oil (EVOO) requires a best before date recommended at up to 24 months after bottling, stored under specific conditions. Thus, it is expected that the product retains its chemical properties and preserves its 'extra virgin' category. However, inadequate storage conditions could alter the properties of EVOO. In this study, Arbequina EVOO was exposed to five storage conditions for up to one year to study the effects on the quality of the oil and the compounds responsible for flavor. Every 15 or 30 days, samples from each storage condition were analyzed, determining physicochemical parameters, the profiles of phenols, volatile compounds, α-tocopherol, and antioxidant capacity. Principal component analysis was utilized to better elucidate the relationships between the composition of EVOOs and the storage conditions. EVOOs stored at -23 and 23 °C in darkness and 23 °C with light, differed from the oils stored at 30 and 40 °C in darkness. The former was associated with a higher quantity of non-oxidized phenolic compounds and the latter with higher elenolic acid, oxidized oleuropein, and ligstroside derivatives, which also increased with storage time. (E)-2-nonenal (detected at trace levels in fresh oil) was selected as a marker of the degradation of Arbequina EVOO quality over time, with significant linear regressions identified for the storage conditions at 30 and 40 °C. Therefore, early oxidation in EVOO could be monitored by measuring (E)-2-nonenal levels.
Collapse
Affiliation(s)
- Leeanny Caipo
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (L.C.); (A.S.)
| | - Ana Sandoval
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (L.C.); (A.S.)
| | - Betsabet Sepúlveda
- Centro Para el Desarrollo de la Química, CEPEDEQ, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile;
| | - Edwar Fuentes
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile;
| | - Rodrigo Valenzuela
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Adam H. Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Nalda Romero
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (L.C.); (A.S.)
- Correspondence:
| |
Collapse
|
14
|
Di Vaio C, Graziani G, Gaspari A, De Luca L, Aiello A, Cirillo A, Bruno A, Romano R, Ritieni A. Drupe Characters, Fatty Acids, Polyphenolic and Aromatic Profile of Olive Oil Obtained from "Oliva Bianca", Minor Autochthonous Cultivar of Campania. PLANTS 2021; 10:plants10061119. [PMID: 34073141 PMCID: PMC8226733 DOI: 10.3390/plants10061119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/30/2022]
Abstract
Campania, due to its pedo-climatic conditions and to its large varietal heritage, is able to produce oils with high typicity, each different from the other. In this study a “minor” autochthonous cultivar of Campania “Oliva Bianca” was analyzed. In autumn 2020, on drupes from trees belonging to the Campania germplasm collection a varietal characterization through physical, chemical and chromatic parameters at the harvest was carried out. Phenolic compounds profile, fatty acids composition and volatile organic compounds have been investigated in the resulting oil. Quality indices, organoleptic and sensory qualities (panel test) were also determined on the oil. Drupe weight was 4.31 g, flesh/pit ratio was 3.68 and the accumulation of oil content at harvest in drupes was 18.63% FW. The drupes showed high anthocyanins content equal to 116.10 mg/kg. In the oil studied, the secoiridoids represented the 82.25% of total phenolic compounds, the concentration of oleic acid was 74.82% and the most present volatile compound was trans-2-hexenal (72.30%). High secoiridoid derivatives concentrations such as oleuropein (85.93 mg/kg) and ligstroside (122.43 mg/kg) aglycones were showed. This study showed a good content of qualitative and quantitative parameters of “Oliva Bianca” oil and drupe, that can have important beneficial effects on human health.
Collapse
Affiliation(s)
- Claudio Di Vaio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (C.D.V.); (L.D.L.); (A.A.); (A.C.); (A.B.)
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.G.); (A.R.)
- Correspondence: (G.G.); (R.R.)
| | - Anna Gaspari
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.G.); (A.R.)
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (C.D.V.); (L.D.L.); (A.A.); (A.C.); (A.B.)
| | - Alessandra Aiello
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (C.D.V.); (L.D.L.); (A.A.); (A.C.); (A.B.)
| | - Aurora Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (C.D.V.); (L.D.L.); (A.A.); (A.C.); (A.B.)
| | - Antonio Bruno
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (C.D.V.); (L.D.L.); (A.A.); (A.C.); (A.B.)
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (C.D.V.); (L.D.L.); (A.A.); (A.C.); (A.B.)
- Correspondence: (G.G.); (R.R.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.G.); (A.R.)
- Unesco Chair for Health Education and Sustainable Development, 80131 Naples, Italy
| |
Collapse
|
15
|
1H–NMR fingerprinting and supervised pattern recognition to evaluate the stability of virgin olive oil during storage. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Majumder D, Debnath M, Sharma KN, Shekhawat SS, Prasad GBKS, Maiti D, Ramakrishna S. Olive oil consumption can prevent non-communicable diseases and COVID-19 : Review. Curr Pharm Biotechnol 2021; 23:261-275. [PMID: 33845735 DOI: 10.2174/1389201022666210412143553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
The Mediterranean diet is appraised as the premier dietary regimen and its espousal is correlated with the prevention of degenerative diseases and extended longevity. The consumption of olive oil stands out as the most peculiar feature of the Mediterranean diet. Olive oil rich in various bioactive compounds like oleanolic acid, oleuropein, oleocanthal, and hydroxytyrosol is known for its anti-inflammatory as well as cardioprotective property. Recently in silico studies have indicated that phytochemicals present in olive oil are a potential candidate to act against SARS-CoV-2. Although extensive studies on olive oil and its phytochemical composition; still, some lacunas persist in understanding how the phytochemical composition of olive oil is dependent on upstream processing. The signaling pathways regulated by olive oil in the restriction of various diseases is also not clear. To answer these queries, a detailed search of research and review articles published between 1990 to 2019 were reviewed in this effect. Olive oil consumption was found to be advantageous for various chronic non-communicable diseases. Olive oil's constituents are having potent anti-inflammatory activities and thus restrict the progression of various inflammation-linked diseases ranging from arthritis to cancer. But it is also notable that the amount and nature of phytochemical composition of household olive oil are regulated by its upstream processing and the physicochemical properties of this oil can give a hint regarding the manufacturing method as well as its therapeutic. Moreover, daily uptake of olive oil should be monitored as excessive intake can cause body weight gain and change in the basal metabolic index. So, it can be concluded that olive oil consumption is beneficial for human health, and particularly for the prevention of cardiovascular diseases, breast cancer, and inflammation. The simple way of processing olive oil maintains the polyphenol constituents and provides more protection against non-communicable diseases and SARS-CoV-2.
Collapse
Affiliation(s)
- Debabrata Majumder
- Department of Human Physiology Tripura University, Suryamaninagar Tripura-799022. India
| | - Mousumi Debnath
- Department of Biosciences Manipal University, Jaipur Campus Rajasthan-303007. India
| | - Kamal Nayan Sharma
- Department of Chemistry, Biochemistry and Forensic science Amity University Haryana, Manesar Haryana-122412. India
| | - Surinder Singh Shekhawat
- Rajasthan olive Cultivation limited Campus Agriculture Research Station, Jaipur Rajasthan-302018. India
| | - G B K S Prasad
- Department of Biochemistry Jiwaji University, Gwalior Madhya Pradesh-474001. India
| | - Debasish Maiti
- Department of Human Physiology Tripura University, Suryamaninagar Tripura-799022. India
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology National University Singapore. Singapore
| |
Collapse
|
17
|
Cecchi L, Migliorini M, Mulinacci N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2013-2040. [PMID: 33591203 DOI: 10.1021/acs.jafc.0c07744] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds strongly contribute to both the positive and negative sensory attributes of virgin olive oil, and more and more studies have been published in recent years focusing on several aspects regarding these molecules. This Review is aimed at giving an overview on the state of the art about the virgin olive oil volatile compounds. Particular emphasis was given to the composition of the volatile fraction, the analytical issues and approaches for analysis, the sensory characteristics and interaction with phenolic compounds, and the approaches for supporting the Panel Test in virgin olive oil classification and in authentication of the botanical and geographic origin based on volatile compounds. A pair of detailed tables with a total of approximately 700 volatiles identified or tentatively identified to date and tables dealing with analytical procedures, sensory characteristics of volatiles, and specific chemometric approaches for quality assessment are also provided.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Marzia Migliorini
- Carapelli Firenze S.p.A., Via Leonardo da Vinci 31, 50028 Tavarnelle Val di Pesa, Florence, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| |
Collapse
|
18
|
Ramos-Escudero F, Morales MT, Ramos Escudero M, Muñoz AM, Cancino Chavez K, Asuero AG. Assessment of phenolic and volatile compounds of commercial Sacha inchi oils and sensory evaluation. Food Res Int 2021; 140:110022. [DOI: 10.1016/j.foodres.2020.110022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/14/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
|
19
|
Monitoring Virgin Olive Oil Shelf-Life by Fluorescence Spectroscopy and Sensory Characteristics: A Multidimensional Study Carried Out under Simulated Market Conditions. Foods 2020; 9:foods9121846. [PMID: 33322615 PMCID: PMC7763516 DOI: 10.3390/foods9121846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
The control of virgin olive oil (VOO) freshness requires new tools that reflect the diverse chemical changes that take place during the market period. Fluorescence spectroscopy is one of the techniques that has been suggested for controlling virgin olive oil (VOO) freshness during its shelf-life. However, a complete interpretation of fluorescence spectra requires analyzing multiple parameters (chemical, physical–chemical, and sensory) to evaluate the pace of fluorescence spectral changes under moderate conditions with respect to other changes impacting on VOO quality. In this work, four VOOs were analyzed every month with excitation–emission fluorescence spectra. The same samples were characterized with the concentration of fluorophores (phenols, tocopherols, chlorophyll pigments), physical–chemical parameters (peroxide value, K232, K270, free acidity), and sensory attributes (medians of defects and of the fruity attribute). From the six components extracted with parallel factor analysis (PARAFAC), two components were assigned to chlorophyll pigments and those assigned to tocopherols, phenols, and oxidation products were selected for their ability to discriminate between fresh and aged oils. Thus, the component assigned to oxidation products correlated with K270 in the range 0.80–0.93, while the component assigned to tocopherols–phenols correlated with the fruity attribute in the range 0.52–0.90. The sensory analysis of the samples revealed that the changes of these PARAFAC components occurred at the same time as, or even before, the changes of the sensory characteristics.
Collapse
|
20
|
Aprea E. Special Issue "Volatile Compounds and Smell Chemicals (Odor and Aroma) of Food". Molecules 2020; 25:molecules25173811. [PMID: 32825704 PMCID: PMC7504400 DOI: 10.3390/molecules25173811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/01/2022] Open
Affiliation(s)
- Eugenio Aprea
- Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige (TN), Italy;
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige (TN), Italy
| |
Collapse
|