1
|
Abotaleb A, Gladich I, Mroue K, Abounahia N, Alkhateeb A, Al-Shammari A, Tong Y, Al-Masri D, Sinopoli A. Impact of thermal treatment on halloysite nanotubes: A combined experimental-computational approach. Heliyon 2024; 10:e39952. [PMID: 39553564 PMCID: PMC11565379 DOI: 10.1016/j.heliyon.2024.e39952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Halloysite nanotubes (HNTs) are naturally occurring aluminosilicate minerals, known for their unique tubular structure, which have garnered significant interest for a wide range of applications. This study explores the morphological changes of HNTs when subjected to thermal treatment ranging from 25 °C to 1100 °C using a combination of experimental characterization techniques and molecular dynamics simulations. Techniques such as solid-state NMR (SSNMR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurements, and Fourier Transform Infrared Spectroscopy (FT-IR) were employed to analyse the structural evolution. The results reveal two major transitions: the first occurring between 400 and 500 °C, corresponding to the release of intercalated water and partial distortion of the HNT structure, and the second occurring between 900 and 1000 °C, marked by the collapse of the tubular structure and the exposure of alumina on the surface. These findings provide significant insights into the thermal stability of HNTs, informing future applications, especially in high-temperature environments.
Collapse
Affiliation(s)
- Ahmed Abotaleb
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Ivan Gladich
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Kamal Mroue
- HBKU Core Laboratories, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Nada Abounahia
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Alaa Alkhateeb
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | | | - Yongfeng Tong
- HBKU Core Laboratories, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Dema Al-Masri
- Earthna Center for a Sustainable Future, Qatar Foundation, Doha, Qatar
| | - Alessandro Sinopoli
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
2
|
Amin M, Usman M, Kella T, Khan WU, Khan IA, Hoon Lee K. Issues and challenges of Fischer-Tropsch synthesis catalysts. Front Chem 2024; 12:1462503. [PMID: 39324063 PMCID: PMC11422086 DOI: 10.3389/fchem.2024.1462503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Depletion of oil and gas resources is a major concern for researchers and the global community. Researchers are trying to develop a way to overcome these issues using the Fischer-Tropsch synthesis (FTS) process. The FTS reaction converts a mixture of hydrogen and carbon monoxide gases into a liquid fuel. The reactions are performed in the reactor and in the presence of a catalyst. A series of catalysts, such as iron, cobalt, nickel, and ruthenium, have been used for the FTS process. In iron-based catalysts, the Fe5C phase is the active phase that produces C5+ hydrocarbons. At higher conversion rates, the presence of water in the products is a problem for cobalt catalysts because it can trigger catalyst deactivation mechanisms. Ni-based catalysts play key roles as base catalysts, promoters, and photothermal catalysts in FTS reactions to produce different useful hydrocarbons. Ruthenium catalysts offer not only high activity but also selectivity toward long-chain hydrocarbons. Moreover, depending on the Ru particle size and interaction with the oxide support, the catalyst properties can be tuned to enhance the catalytic activity during FTS. The detailed reaction pathways based on catalyst properties are explained in this article. This review article describes the issues and challenges associated with catalysts used for the FTS process.
Collapse
Affiliation(s)
- Muhammad Amin
- Interdisciplinary Research Centre for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Muhammad Usman
- Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tatinaidu Kella
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Wasim Ullah Khan
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Imtiaz Afzal Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Kang Hoon Lee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon-si, Republic of Korea
| |
Collapse
|
3
|
Wang Q, Zhao J, Yang X, Li J, Wu C, Shen D, Cheng C, Xu LH. Tuning the electronic metal-carbon interactions in Lignin-based carbon-supported ruthenium-based electrocatalysts for enhanced hydrogen evolution reactions. J Colloid Interface Sci 2024; 664:251-262. [PMID: 38467090 DOI: 10.1016/j.jcis.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Ruthenium (Ru) nanoparticles dispersed on carbon support are promising electrocatalysts for hydrogen evolution reaction (HER) due to strong electronic metal-carbon interactions (EMCIs). Defects engineering in carbon supports is an effective strategy to adjust EMCIs. We prepared nitrogen/sulfur co-doped carbon supported Ru nanoparticles (Ru@N/S-LC) using sodium lignosulfonate and urea as feedstocks. Intrinsic S dopants from sodium lignosulfonate create rich S defects, thus enhancing the EMCIs within Ru@N/S-LC, leading a faster electron transfer between Ru nanoparticles and N/S-LC compared with N-doped carbon supported Ru nanoparticles (Ru@N-CC). The resulting Ru@N/S-LC exhibits an enhanced work function and a down-shifted d-band center, inducing stronger electron capturing ability and weaker hydrogen desorption energy than Ru@N-CC. Ru@N/S-LC requires only 7 and 94 mV overpotential in acidic medium and alkaline medium to achieve a current density of 10 mA cm-2. Density Functional Theory (DFT) calculations were utilized to clarify the impact of sulfur (S) doping and the mechanism underlying the notable catalytic activity of Ru@N/S-LC. This study offers a perspective for utilizing the natural dopants of biomass to adjust the EMCIs for electrocatalysts.
Collapse
Affiliation(s)
- Qichang Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Jing Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Xiaoxuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Jianfei Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China.
| | - Chongbo Cheng
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing 210046, PR China.
| | - Lian-Hua Xu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
4
|
Zhao P, Feng Y, Zhou Y, Tan C, Liu M. Gold@Halloysite nanotubes-chitin composite hydrogel with antibacterial and hemostatic activity for wound healing. Bioact Mater 2023; 20:355-367. [PMID: 35784635 PMCID: PMC9207301 DOI: 10.1016/j.bioactmat.2022.05.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 01/13/2023] Open
Abstract
Infection and healing of wounds after injury has always been an unavoidable problem in daily life, so design of a biomaterial with antibacterial and good wound healing properties is highly needed. Herein, a wound healing hydrogel dressing with halloysite clay and chitin as the main components was prepared, which combines the advantages of the biomacromolecule and clay. Halloysite nanotubes (HNTs) are extremely biocompatible clay materials with a hollow tubular structure, and the inner and outer surfaces of HNTs are composed of SiOx and AlOx layers with different charges. Au nanoparticles with diameter in 5-10 nm were filled into the HNTs' lumen to endow photothermal effect of the clay materials. Au@HNTs was then mixed with chitin solution to prepare flexible composite hydrogel by crosslinking by epichlorohydrin. The antibacterial properties, biocompatibility and hemostatic properties of the hydrogel material were investigated by antibacterial experiments, cell experiments, mouse liver and tail hemostatic experiments. After infecting the back wound of mice with Staphylococcus aureus, the hydrogel was applied to the wound to further verify the killing effect on bacteria and wound healing effect of the hydrogel material in vivo. The Au@HNTs-chitin composite hydrogel exhibits high antibacterial and hemostatic activity as well as promoting wound healing function with low cytotoxicity. This study is significant for the development of high-performance wound dressings based on two commonly used biocompatible materials, which shows promising application in wound sterilization and healing.
Collapse
Affiliation(s)
- Puxiang Zhao
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Yue Feng
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Youquan Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Cuiying Tan
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| |
Collapse
|
5
|
Massaro M, Ciani R, Cinà G, Colletti CG, Leone F, Riela S. Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook. Antibiotics (Basel) 2022; 11:antibiotics11121761. [PMID: 36551418 PMCID: PMC9774400 DOI: 10.3390/antibiotics11121761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections represent one of the major causes of mortality worldwide. Therefore, over the years, several nanomaterials with antibacterial properties have been developed. In this context, clay minerals, because of their intrinsic properties, have been efficiently used as antimicrobial agents since ancient times. Halloysite nanotubes are one of the emerging nanomaterials that have found application as antimicrobial agents in several fields. In this review, we summarize some examples of the use of pristine and modified halloysite nanotubes as antimicrobial agents, scaffolds for wound healing and orthopedic implants, fillers for active food packaging, and carriers for pesticides in food pest control.
Collapse
|
6
|
Okonye LU, Yao Y, Ren J, Liu X, Hildebrandt D. A perspective on the Activation Energy Dependence of the Fischer-Tropsch Synthesis Reaction Mechanism. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Xu B, Meng X, Xin Z, Gao W, Yang D, Jin D, Zhao R, Dai W. A Novel CO Methanation Catalyst System Based on Acid-Etched Natural Halloysites as Supports. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bowen Xu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Xin Meng
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Zhong Xin
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Wenli Gao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dandan Yang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Daoming Jin
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Rui Zhao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Wenhua Dai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
8
|
Stavitskaya A, Rubtsova M, Glotov A, Vinokurov V, Vutolkina A, Fakhrullin R, Lvov Y. Architectural design of core-shell nanotube systems based on aluminosilicate clay. NANOSCALE ADVANCES 2022; 4:2823-2835. [PMID: 36132000 PMCID: PMC9419087 DOI: 10.1039/d2na00163b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/17/2022] [Indexed: 05/25/2023]
Abstract
A nanoarchitectural approach to the design of functional nanomaterials based on natural aluminosilicate nanotubes and their catalysis, and practical applications are described in this paper. We focused on the buildup of hybrid core-shell systems with metallic or organic molecules encased in aluminosilicate walls, and nanotube templates for structured silica and zeolite preparation. The basis for such an architectural design is a unique Al2O3/SiO2 dual chemistry of 50 nm diameter halloysite tubes. Their structure and site dependent properties are well combined with biocompatibility, environmental safety, and abundant availability, which makes the described functional systems scalable for industrial applications. In these organic/ceramic hetero systems, we outline drug, dye and chemical inhibitor loading inside the clay nanotubes, accomplished with their silane or amphiphile molecule surface modifications. For metal-ceramic tubule composites, we detailed the encapsulation of 2-5 nm Au, Ru, Pt, and Ag particles, Ni and Co oxides, NiMo, and quantum dots of CdZn sulfides into the lumens or their attachment at the outside surface. These metal-clay core-shell nanosystems show high catalytic efficiency with increased mechanical and temperature stabilities. The combination of halloysite nanotubes with mesoporous MCM-41 silica allowed for a synergetic enhancement of catalysis properties. Finally, we outlined the clay nanotubes' self-assembly into organized arrays with orientation and ordering similar to nematic liquid crystals, and these systems are applicable for life-related applications, such as petroleum spill bioremediation, antimicrobial protection, wound healing, and human hair coloring.
Collapse
Affiliation(s)
- Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Maria Rubtsova
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Aleksandr Glotov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Vladimir Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Anna Vutolkina
- Chemistry Department, M. Lomonosov Moscow State University Moscow 119991 Russian Federation
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan Republic of Tatarstan 420008 Russian Federation
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University Ruston LA 71272 USA
| |
Collapse
|
9
|
Ghiyasiyan-Arani M, Salavati-Niasari M. Decoration of green synthesized S, N-GQDs and CoFe 2O 4 on halloysite nanoclay as natural substrate for electrochemical hydrogen storage application. Sci Rep 2022; 12:8103. [PMID: 35577885 PMCID: PMC9110390 DOI: 10.1038/s41598-022-12321-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Halloysite nanotubes (HNTs) with high active sites are used as natural layered mineral supports. Sulfur- and nitrogen-co doped graphene quantum dots (S, N-GQDs) as conductive additive and CoFe2O4 as the electrocatalyst was decorated on a HNT support to design an effective and environmentally friendly active material. Herein, an eco-friendly CoFe2O4/S, N-GQDs/HNTs nanocomposite is fabricated via a green hydrothermal method to equip developed hydrogen storage sites and to allow for quick charge transportation for hydrogen storage utilization. The hydrogen storage capacity of pure HNTs was 300 mAhg-1 at a current density of 1 mA after 20 cycles, while that of S, N-GQD-coated HNTs (S, N-GQDs/HNTs) was 466 mAhg-1 under identical conditions. It was also conceivable to increase the hydrogen sorption ability through the spillover procedure by interlinking CoFe2O4 in the halloysite nanoclay. The hydrogen storage capacity of the CoFe2O4/HNTs was 450 mAhg-1, while that of the representative designed nanocomposites of CoFe2O4/S, N-GQDs/HNTs was 600 mAhg-1. The halloysite nano clay and treated halloysite show potential as electrode materials for electrochemical energy storage in alkaline media; in particular, ternary CoFe2O4/S, N-GQD/HNT nanocomposites prove developed hydrogen sorption performance in terms of presence of conductive additive, physisorption, and spillover mechanisms.
Collapse
Affiliation(s)
- Maryam Ghiyasiyan-Arani
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box. 87317-51167, Kashan, Islamic Republic of Iran.
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box. 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
10
|
Calvino MM, Cavallaro G, Lisuzzo L, Milioto S, Lazzara G. Separation of halloysite/kaolinite mixtures in water controlled by sucrose addition: The influence of the attractive forces on the sedimentation behavior. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Wang X, Fan P, Wang S, Liu H, Liao L. Nanotubular Polyaniline/Reduced Graphene Oxide Composite Synthesized from a Natural Halloysite Template for Application as a High Performance Supercapacitor Electrode. ChemistrySelect 2022. [DOI: 10.1002/slct.202104402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaofei Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P.R. China
| | - Peng Fan
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P.R. China
| | - Shuonan Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P.R. China
| | - Hao Liu
- School of Science China University of Geosciences Beijing 100083 P.R. China
| | - Libing Liao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P.R. China
| |
Collapse
|
12
|
Mazurova K, Glotov A, Kotelev M, Eliseev O, Gushchin P, Rubtsova M, Vutolkina A, Kazantsev R, Vinokurov V, Stavitskaya A. Natural aluminosilicate nanotubes loaded with RuCo as nanoreactors for Fischer-Tropsch synthesis. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:17-30. [PMID: 35069010 PMCID: PMC8774063 DOI: 10.1080/14686996.2021.2017754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 05/31/2023]
Abstract
Following nanoarchitectural approach, mesoporous halloysite nanotubes with internal surface composed of alumina were loaded with 5-6 nm RuCo nanoparticles by sequential loading/reduction procedure. Ruthenium nanoclusters were loaded inside clay tube by microwave-assisted method followed by cobalt ions electrostatic attraction to ruthenium during wetness impregnation step. Developed nanoreactors with bimetallic RuCo nanoparticles were investigated as catalysts for the Fischer-Tropsch process. The catalyst with 14.3 wt.% of Co and 0.15 wt.% of Ru showed high activity (СO conversion reached 24.6%), low selectivity to methane (11.9%), CO2 (0.3%), selectivity to C5+ hydrocarbons of 79.1% and chain growth index (α) = 0.853. Proposed nanoreactors showed better selectivity to target products combined with high activity in comparison to the similar bimetallic systems supported on synthetic porous materials. It was shown that reducing agent (NaBH4 or H2) used to obtain Ru nanoclusters at first synthesis step played a very important role in the reducibility and selectivity of resulting RuCo catalysts.
Collapse
Affiliation(s)
- Kristina Mazurova
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Aleksandr Glotov
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
- Chemical Department, Moscow State University, Moscow, Russia
| | - Mikhail Kotelev
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Oleg Eliseev
- Laboratory of Catalytic Reactions of Carbon Oxides, N.d. Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russia
| | - Pavel Gushchin
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Maria Rubtsova
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Anna Vutolkina
- Chemical Department, Moscow State University, Moscow, Russia
| | - Ruslan Kazantsev
- Laboratory of Catalytic Reactions of Carbon Oxides, N.d. Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russia
| | - Vladimir Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| |
Collapse
|
13
|
Nanoreactors based on hydrophobized tubular aluminosilicates decorated with ruthenium: Highly active and stable catalysts for aromatics hydrogenation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Ruiz-Hitzky E, Ruiz-García C, Fernandes FM, Lo Dico G, Lisuzzo L, Prevot V, Darder M, Aranda P. Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials. Front Chem 2021; 9:733105. [PMID: 34485248 PMCID: PMC8414812 DOI: 10.3389/fchem.2021.733105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Sepiolite and palygorskite fibrous clay minerals are 1D silicates featuring unique textural and structural characteristics useful in diverse applications, and in particular as rheological additives. Here we report on the ability of grinded sepiolite to generate highly viscous and stable hydrogels by sonomechanical irradiation (ultrasounds). Adequate drying of such hydrogels leads to low-density xerogels that show extensive fiber disaggregation compared to the starting sepiolite—whose fibers are agglomerated as bundles. Upon re-dispersion in water under high-speed shear, these xerogels show comparable rheological properties to commercially available defibrillated sepiolite products, resulting in high viscosity hydrogels that minimize syneresis. These colloidal systems are thus very interesting as they can be used to stabilize many diverse compounds as well as nano-/micro-particles, leading to the production of a large variety of composites and nano/micro-architectured solids. In this context, we report here various examples showing how colloidal routes based on sepiolite hydrogels can be used to obtain new heterostructured functional materials, based on their assembly to solids of diverse topology and composition such as 2D and 1D kaolinite and halloysite aluminosilicates, as well as to the 2D synthetic Mg,Al-layered double hydroxides (LDH).
Collapse
Affiliation(s)
| | - Cristina Ruiz-García
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Francisco M Fernandes
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Laboratoire de Chimie de la Matière Condensée de Paris, Faculté de Sciences, Sorbonne Université, Paris, France
| | - Giulia Lo Dico
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,IMDEA Materials Institute, Getafe, Spain
| | - Lorenzo Lisuzzo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Dipartimento di Fisica e Chimica - Emilio Segrè, Università degli Studi di Palermo, Palermo, Italy
| | - Vanessa Prevot
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Université Clermont Auvergne, CNRS, ICCF, Clermont-Ferrand, France
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| |
Collapse
|
15
|
Synergetic photocatalytic-activity enhancement of lanthanum doped TiO2 on halloysite nanocomposites for degradation of organic dye. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Glotov A, Vutolkina A, Pimerzin A, Vinokurov V, Lvov Y. Clay nanotube-metal core/shell catalysts for hydroprocesses. Chem Soc Rev 2021; 50:9240-9277. [PMID: 34241609 DOI: 10.1039/d1cs00502b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catalytic hydroprocesses play a significant role in oil refining and petrochemistry. The tailored design of new metal nanosystems and optimization of their support, composition, and structure is a prospective strategy for enhancing the efficiency of catalysts. Mesoporous support impacts the active component by binding it to the surface, which leads to the formation of tiny highly dispersed catalytic particles stabilized from aggregation and with minimized leaching. The structural and acidic properties of the support are crucial and determine the size and dispersion of the active metal phase. Currently, research efforts are shifted toward the design of nanoscale porous materials, where homogeneous catalysts are displaced by heterogeneous. Ceramic materials, such as 50 nm diameter natural halloysite nanotubes, are of special interest for this. Much attention to halloysite clay is due to its tubular structure with a hollow 10-15 nm diameter internal cavity, textural characteristics, and different chemical compositions of the outer/inner surfaces, allowing selective nanotube modification. Loading halloysite with metal particles or placing them outside the tubes provides stable and efficient mesocatalysts. The low cost of this abundant nanoclay makes it a good choice for the scaled-up architectural design of core-shell catalysts, containing active metal sites (Au, Ag, Pt, Ru, Co, Mo, Fe2O3, CdS, CdZnS, Cu-Ni) located inside or outside the tubular template. These alumosilicate nanotubes are environment-friendly and are available in thousands of tons. Herein, we summarized the advances of halloysite-based composite materials for hydroprocesses, focusing on the selective binding of metal particles. We analyze the tubes' morphology adjustments and size selection, the physicochemical properties of pristine and modified halloysite (e.g., acid-etched or silanized), the methods of metal clusters formation, and their localization. We indicate prospective routes for the architectural design of stable and efficient nanocatalysts based on this safe and natural clay material.
Collapse
Affiliation(s)
- Aleksandr Glotov
- Gubkin Russian State University of Oil and Gas (NRU), 65 Leninsky Prospekt, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
17
|
Noël S, Madureira A, Léger B, Ponchel A, Sadjadi S, Monflier É. Cyclodextrin-assisted catalytic hydrogenation of hydrophobic substrates with halloysite immobilized ruthenium NPs dispersed in aqueous phase. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Akopyan A, Polikarpova P, Vutolkina A, Cherednichenko K, Stytsenko V, Glotov A. Natural clay nanotube supported Mo and W catalysts for exhaustive oxidative desulfurization of model fuels. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-0901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Oxidative desulfurization is a promising way to produce, under mild conditions, clean ecological fuels with ultra-low sulfur content. Herein, we present for the first time heterogeneous catalysts based on natural aluminosilicate nanotubes (halloysite) loaded with transition metal oxides for oxidative sulfur removal using hydrogen peroxide as environmentally safe oxidant. The halloysite nanotubes (HNTs) provide acid sites for C–S bond scission, while the Mo and W oxides act as hydrogen peroxide activators. The structure and acidity of both the clay support and catalysts were investigated by low-temperature nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray fluorescence analysis, and transmission electron microscopy techniques. These clay-based catalysts revealed the high activity in the oxidation of various classes of sulfur-containing compounds (sulfides, heteroatomic sulfur compounds) under mild reaction conditions. The conversion of various substrates decreases in the following trend: MeSPh > Bn2S > DBT > 4-MeDBT > BT, which deals with substrate electron density and steric hindrance. The influence of the temperature, oxidant to sulfur molar ratio, and reaction time on catalytic behavior was evaluated for Mo- and W-containing systems with various metal content. The complete oxidation of the most intractable dibenzothiophene to the corresponding sulfone was achieved at 80 °C and H2O2:S = 6:1 (molar) for 2 h both for Mo- and W-containing systems. These transition metal oxides HNTs supported catalysts are stable for 10 cycles of dibenzothiophene oxidation, which makes them promising systems for clean fuel production.
Collapse
Affiliation(s)
- Argam Akopyan
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Polina Polikarpova
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Anna Vutolkina
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Kirill Cherednichenko
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| | - Valentine Stytsenko
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| | - Aleksandr Glotov
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| |
Collapse
|
19
|
|
20
|
Sidorenko A, Kurban Y, Aho A, Ihnatovich Z, Kuznetsova T, Heinmaa I, Murzin D, Agabekov V. Solvent-free synthesis of tetrahydropyran alcohols over acid-modified clays. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications. CRYSTALS 2020. [DOI: 10.3390/cryst10080654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The past two decades have been marked by an increased interest in the synthesis and the properties of geoinspired hydrosilicate nanoscrolls and nanotubes. The present review considers three main representatives of this group: halloysite, imogolite and chrysotile. These hydrosilicates have the ability of spontaneous curling (scrolling) due to a number of crystal structure features, including the size and chemical composition differences between the sheets, (or the void in the gibbsite sheet and SiO2 tetrahedron, in the case of imogolite). Mineral nanoscrolls and nanotubes consist of the most abundant elements, like magnesium, aluminium and silicon, accompanied by uncontrollable amounts of impurities (other elements and phases), which hinder their high technology applications. The development of a synthetic approach makes it possible to not only to overcome the purity issues, but also to enhance the chemical composition of the nanotubular particles by controllable cation doping. The first part of the review covers some principles of the cation doping approach and proposes joint criteria for the semiquantitative prediction of morphological changes that occur. The second part focuses on some doping-related properties and applications, such as morphological control, uptake and release, magnetic and mechanical properties, and catalysis.
Collapse
|
22
|
Abstract
Taking into account the excellent catalytic performance of halloysite nanotubes, the main focus of this review article is to unveil the research on halloysite nanotubes for the preparation of solid acids and their applications in acid catalysis.
Collapse
Affiliation(s)
- Aman Mahajan
- Department of Applied Sciences and Humanities
- Model Institute of Engineering and Technology
- Kot Bhalwal
- India
| | - Princy Gupta
- Department of Chemistry and Chemical Sciences
- Central University of Jammu
- Rahya-Suchani (Bagla)
- Jammu-181143
- India
| |
Collapse
|