1
|
Khan RJ, Guan J, Lau CY, Zhuang H, Rehman S, Leu SY. Monolignol Potential and Insights into Direct Depolymerization of Fruit and Nutshell Remains for High Value Sustainable Aromatics. CHEMSUSCHEM 2024; 17:e202301306. [PMID: 38078500 DOI: 10.1002/cssc.202301306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
The inedible parts of nuts and stone fruits are low-cost and lignin-rich feedstock for more sustainable production of aromatic chemicals in comparison with the agricultural and forestry residues. However, the depolymerization performances on food-related biomass remains unclear, owing to the broad physicochemical variations from the edible parts of the fruits and plant species. In this study, the monomer production potentials of ten major fruit and nutshell biomass were investigated with comprehensive numerical information derived from instrumental analysis, such as plant cell wall chemical compositions, syringyl/guaiacyl (S/G ratios, and contents of lignin substructure linkages (β-O-4, β-β, β-5). A standardized one-pot reductive catalytic fractionation (RCF) process was applied to benchmark the monomer yields, and the results were statistically analyzed. Among all the tested biomass, mango endocarp provided the highest monolignol yields of 37.1 % per dry substrates. Positive S-lignin (70-84 %) resulted in higher monomer yield mainly due to more cleavable β-O-4 linkages and less condensed C-C linkages. Strong positive relationships were identified between β-O-4 and S-lignin and between β-5 and G-lignin. The analytical, numerical, and experimental results of this study shed lights to process design of lignin-first biorefinery in food-processing industries and waste management works.
Collapse
Affiliation(s)
- Rabia J Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chun Y Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong, 3400-8322
| |
Collapse
|
2
|
Ibrahim SS, Sahu U, Karthik P, Vendan SE. Eugenol nanoemulsion as bio-fumigant: enhanced insecticidal activity against the rice weevil, Sitophilus oryzae adults. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1435-1445. [PMID: 36936125 PMCID: PMC10020412 DOI: 10.1007/s13197-023-05690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/09/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
Nanoemulsion is a promising delivery system for delivering the plant bioactive molecules against insect pests. In this study, we aimed to prepare eugenol based nanoemulsions (EL-NE) by ultrasonication method to investigate its fumigant toxicity against Sitophilus oryzae adults and to analyse the residual characteristics of eugenol bioactive on the treated grains and beetles. In EL-NE preparations, 1:1 ratio of eugenol: Tween 80 combination with 5 min of ultrasonication at frequency of 10 kHz and 12 W power output was determined as optimal. In the optimized nanoemulsions, 19.21 to 42.82 d.nm range of mean droplet size, 0.50 to 0.77 range of polydispersity index and -21.80 to -29.83 mV range of zeta potential values were observed with respect to 2.5 to 10.0% of eugenol concentrations. After 72 h of fumigation, enhanced fumigant toxicities (3.5-11.2 fold) were observed against S. oryzae adults for the optimized EL-NEs compared to eugenol alone. Fumigant toxicity results revealed 14.40 µl/L air of least LC50 value for the 10.0% EL-NE. Persistence of eugenol was more (12.46%) in EL-NE treated wheat grains compared to eugenol alone treatments based on Gas Chromatography-Mass Spectroscopy analysis, which indicates the improved fumigation. This study results suggests EL-NEs as promising nano-biofumigant against the S. oryzae adults for eco-friendly Integrated Pest Management (IPM). Graphical abstract
Collapse
Affiliation(s)
- Samar Sayed Ibrahim
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
- Present Address: Pests and Plant Protection Department, National Research Centre, Cairo, 12622 Egypt
| | - Urvashi Sahu
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| | - Pothiyappan Karthik
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641 021 India
| | - Subramanian Ezhil Vendan
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| |
Collapse
|
3
|
Aghaei Afshar A, Sharififard M, Jahanifard E, Gorouhi MA, Yousefi S, Shirani-Bidabadi L, Faraji M, Alizadeh I. Application of plants as eco-friendly components against common bed bugs ( Cimex lectularius L.): a systematic review of the literature. JOURNAL OF ESSENTIAL OIL RESEARCH 2023. [DOI: 10.1080/10412905.2023.2167882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Sharififard
- Department of Medical Entomology and Vector Control, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Jahanifard
- Department of Medical Entomology and Vector Control, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Gorouhi
- Department of Vector biology and Control, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Saideh Yousefi
- Department of Public Health, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Leila Shirani-Bidabadi
- Department of Vector biology and Control, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ismaeil Alizadeh
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Chen YZ, Li T, Yang J, Li QM, Zhang GC, Zhang J. Transcriptomic analysis of interactions between Lymantria dispar larvae and carvacrol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105012. [PMID: 35082035 DOI: 10.1016/j.pestbp.2021.105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Due to its biological activity, carvacrol (CAR) is widely used in medicine, agriculture, and forestry. Our previous studies showed that in Lymantria dispar larvae, CAR treatment can induce the production of antifeedants and lead to growth inhibition and death of larvae. However, the effect CAR exerts on RNA levels in L. dispar larvae remains unclear. In this study, the Illumina HiSeq4000 sequencing platform was used to sequence the total RNA of L. dispar larvae. A total of six cDNA libraries (three treatments and three controls) were established and 39,807 genes were generated. Compared with the control group, 296 differentially expressed genes (DEGs) (142 up-regulated and 154 down-regulated) were identified after CAR treatment. GO and KEGG enrichment analyses showed that these DEGs mainly clustered in the metabolism of xenobiotics, carbohydrates, and lipids. Furthermore, 12 DEGs were found to be involved in detoxification, including six cytochrome P450s, two esterases, one glutathione peroxidase, one UDP-glycosyltransferase gene, and two genes encoding heat shock proteins. The expression levels of detoxification genes changed under CAR treatment (especially P450s), which further yielded candidate genes for explorations of the insecticidal mechanism of CAR. The reliability of transcriptome data was verified by qRT-PCR. The enzyme activities of CYP450 and acid phosphatase significantly increased (by 38.52 U/mg·prot and 0.12 μmol/min·mg, respectively) 72 h after CAR treatment. However, the activity of alkaline phosphatase did not change significantly. These changes in enzyme activity corroborated the reliability of the transcriptome data at the protein level. The results of GO enrichment analysis of DEGs indicated that CAR influenced the oxidation-reduction process in L. dispar larvae. Furthermore, CAR can cause oxidative stress in L. dispar larvae, identified through the determination of peroxidase and polyphenol oxidase activities, total antioxidant capacity, and hydrogen peroxide content. This study provides useful insight into the insecticidal mechanism of CAR.
Collapse
Affiliation(s)
- Yun-Ze Chen
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China; School of Biological Sciences, Guizhou Education University, Gaoxin St. 115, Guiyang 550018, PR China
| | - Tao Li
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Jing Yang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China; College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, PR CHina
| | - Qi-Meng Li
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Guo-Cai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China.
| | - Jie Zhang
- College of Life Sciences, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
5
|
Abstract
The current consumer demands together with the international regulations have pushed the cosmetic industry to seek new active ingredients from natural renewable sources for manufacturing more eco-sustainability and safe products, with botanical extract being an almost unlimited source of these new actives. Essential oils (EOs) emerge as very common natural ingredients in cosmetics and toiletries as a result of both their odorous character for the design and manufacturing of fragrances and perfumes, and the many beneficial properties of their individual components (EOCs), e.g., anti-inflammatory, antimicrobial and antioxidant properties, and, nowadays, the cosmetic industry includes EOs or different mixtures of their individual components (EOCs), either as active ingredients or as preservatives, in various product ranges (e.g., moisturizers, lotions and cleanser in skin care cosmetics; conditioners, masks or antidandruff products in hair care products; lipsticks, or fragrances in perfumery). However, the unique chemical profile of each individual essential oil is associated with different benefits, and hence it is difficult to generalize their potential applications in cosmetics and toiletries, which often require the effort of formulators in seeking suitable mixtures of EOs or EOCs for obtaining specific benefits in the final products. This work presents an updated review of the available literature related to the most recent advances in the application of EOs and EOCs in the manufacturing of cosmetic products. Furthermore, some specific aspects related to the safety of EOs and EOCs in cosmetics will be discussed. It is expected that the information contained in this comprehensive review can be exploited by formulators in the design and optimization of cosmetic formulations containing botanical extracts.
Collapse
|
6
|
Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work analyzes the dispersion of a highly hydrophobic molecule, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramide-like molecule), with cosmetic and pharmaceutical interest, by exploiting oil-in-water microemulsions. Two different oils, oleic acid and soybean oil, were tested as an oil phase while mixtures of laureth-5-carboxylic acid (Akypo) and 2-propanol were used for the stabilization of the dispersions. This allowed us to obtain stable aqueous-based formulations with a relatively reduced content of oily phase (around 3% w/w), that may enhance the bioavailability of this molecule by its solubilization in nanometric oil droplets (with a size range of 30–80 nm), that allow the incorporation of a ceramide-like molecule of up to 3% w/w, to remain stable for more than a year. The nanometric size of the droplet containing the active ingredient and the stability of the formulations provide the basis for evaluating the efficiency of microemulsions in preparing formulations to enhance the distribution and availability of ceramide-like molecules, helping to reach targets in cosmetic and pharmaceutical formulations.
Collapse
|
7
|
He Q, Zhao H. Imidacloprid (I) in several aqueous co-solvent mixtures: Solubility, solvent effect, solvation thermodynamics and enthalpy–entropy compensation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Abstract
This work analyzes the dispersion of two highly hydrophobic actives, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramidelike molecule) and 2,6-diamino-4-(piperidin-1-yl)pyrimidine 1-oxide (minoxidil), using oil-in-water nanoemulsions with the aim of preparing stable and safe aqueous-based formulations that can be exploited for enhancing the penetration of active compounds through cosmetic substrates. Stable nanoemulsions with a droplet size in the nanometric range (around 200 nm) and a negative surface charge were prepared. It was possible to prepare formulations containing up to 2 w/w% of ceramide-like molecules and more than 10 w/w% of minoxidil incorporated within the oil droplets. This emulsions evidenced a good long-term stability, without any apparent modification for several weeks. Despite the fact that this work is limited to optimize the incorporation of the actives within the nanoemulsion-like formulations, it demonstrated that nanoemulsions should be considered as a very promising tool for enhancing the distribution and availability of hydrophobic molecules with technological interest.
Collapse
|
9
|
Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers (Basel) 2021; 13:polym13081221. [PMID: 33918844 PMCID: PMC8069484 DOI: 10.3390/polym13081221] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
The Layer-by-Layer (LbL) method is a well-established method for the assembly of nanomaterials with controlled structure and functionality through the alternate deposition onto a template of two mutual interacting molecules, e.g., polyelectrolytes bearing opposite charge. The current development of this methodology has allowed the fabrication of a broad range of systems by assembling different types of molecules onto substrates with different chemical nature, size, or shape, resulting in numerous applications for LbL systems. In particular, the use of soft colloidal nanosurfaces, including nanogels, vesicles, liposomes, micelles, and emulsion droplets as a template for the assembly of LbL materials has undergone a significant growth in recent years due to their potential impact on the design of platforms for the encapsulation and controlled release of active molecules. This review proposes an analysis of some of the current trends on the fabrication of LbL materials using soft colloidal nanosurfaces, including liposomes, emulsion droplets, or even cells, as templates. Furthermore, some fundamental aspects related to deposition methodologies commonly used for fabricating LbL materials on colloidal templates together with the most fundamental physicochemical aspects involved in the assembly of LbL materials will also be discussed.
Collapse
|
10
|
Lucia A, Guzmán E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv Colloid Interface Sci 2021; 287:102330. [PMID: 33302055 DOI: 10.1016/j.cis.2020.102330] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022]
Abstract
Most of the traditional strategies used for facing the management of insect pest and diseases have started to fail due to different toxicological issues such as the resistance of target organism and the impact on environment and human health. This has made mandatory to seek new effective strategies, which minimize the risks and hazards without compromising the effectiveness of the products. The use of essential oils, their components and semiochemicals (pheromones and allelochemicals) has become a promising safe and eco-sustainable alternative for controlling insect pest and pathogens. However, the practical applications of this type of molecules remain rather limited because their high volatility, poor solubility in water and low chemical stability. Therefore, it is required to design strategies enabling their use without any alteration of their biological and chemical properties. Oil-in-water nano/microemulsions are currently considered as promising tools for taking advantage of the bioactivity of essential oils and their components against insects and other pathogens. Furthermore, these colloidal systems also allows the encapsulation and controlled release of semiochemicals, which enables their use in traps for monitoring, trapping or mating disruption of insects, and in push-pull strategies for their behavioral manipulation. This has been possible because the use of nano/microemulsions allows combining the protection provided by the hydrophobic environment created within the droplets with the enhanced dispersion of the molecules in an aqueous environment, which favors the handling of the bioactive molecules, and limits their degradation, without any detrimental effect over their biological activity. This review analyzes some of the most recent advances on the use of emulsion-like dispersions as a tool for controlling insect pest and pathogens. It is worth noting that even though the current physico-chemical knowledge about these systems is relatively poor, a deeper study of the physico-chemical aspects of nanoemulsions/microemulsions containing essential oils, their components or semiochemicals, may help for developing most effective formulations, enabling the generalization of their use.
Collapse
|
11
|
Lucia A, Guzmán E, Rubio RG, Ortega F. Enhanced solubilization of an insect juvenile hormone (JH) mimetic (piryproxyfen) using eugenol in water nanoemulsions stabilized by a triblock copolymer of poly(ethylenglycol) and poly(propilenglycol). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Benelli G. On a Magical Mystery Tour of Green Insecticide Research: Current Issues and Challenges. Molecules 2020; 25:molecules25215014. [PMID: 33138103 PMCID: PMC7662653 DOI: 10.3390/molecules25215014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
The Editorial outlines recent research advances in green insecticide research. Particular attention is devoted to studies shedding light on the modes of action and non-target toxicity of natural substances of plant origin. Research focusing on the development of new formulations (including those relating to nano-objects) to magnify the effectiveness and stability of green insecticides in the field represents key advances. Herein, a carefully reviewed selection of cutting edge articles about green pesticide development recently published in Molecules is presented. The impact of sub-lethal doses of green insecticides on insect behavioral traits is still overlooked, representing a timely challenge for further research.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|