1
|
Reyes C, Karr A, Ramsperger CA, K ATG, Lee HJ, Picazo E. Compartmentalizing Donor-Acceptor Stenhouse Adducts for Structure-Property Relationship Analysis. J Am Chem Soc 2025; 147:10-26. [PMID: 39729546 PMCID: PMC11726581 DOI: 10.1021/jacs.4c14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
The development of photoswitches that absorb low energy light is of notable interest due to the growing demand for smart materials and therapeutics necessitating benign stimuli. Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches that respond to light in the visible to near-infrared spectrum. As a result of their modular assembly, DASAs can be modified at the donor, acceptor, triene, and backbone heteroatom molecular compartments for the tuning of optical and photoswitching properties. This Perspective focuses on the electronic and steric contributions at each compartment and how they influence photophysical properties through the adjustment of the isomerization energetic landscape. An emphasis on current synthetic strategies and their limitations highlights opportunities for DASA architecture, and thus photophysical property expansion.
Collapse
Affiliation(s)
- Cesar
A. Reyes
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Alexander Karr
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Chloe A. Ramsperger
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - A. Talim G. K
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Hye Joon Lee
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Elias Picazo
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Reyes CA, Lee HJ, Karanovic C, Picazo E. Development and characterization of amino donor-acceptor Stenhouse adducts. Nat Commun 2024; 15:5533. [PMID: 38951197 PMCID: PMC11217284 DOI: 10.1038/s41467-024-49808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches spurring wide interest because of their dynamic photophysical properties, complex photoswitching mechanism, and diverse applications. Despite breakthroughs in modularity for the donor, acceptor, and triene compartments, the backbone heteroatom remains static due to synthetic challenges. We provide a predictive tool and sought-after strategy to vary the heteroatom, introduce amino DASA photoswitches, and analyze backbone heteroatom effects on photophysical properties. Amino DASA synthesis is enabled by aza-Piancatelli rearrangements on pyrrole substrates, imparting an aromaticity-breaking rearrangement that capitalizes on nitrogen's additional bonding orbital and the inductive properties of sulfonyl groups. Amino DASA structure is confirmed by single crystal X-ray diffraction, the photochromic properties are characterized, and the photoswitch isomerization is investigated. Overall, the discovered pyrrole rearrangement enables the study of the DASA backbone heteroatom compartment and furthers our insight into the structure-property relationship of this complex photoswitch.
Collapse
Affiliation(s)
- Cesar A Reyes
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA
| | - Hye Joon Lee
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA
| | - Connie Karanovic
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA
| | - Elias Picazo
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Clerc M, Sandlass S, Rifaie-Graham O, Peterson JA, Bruns N, Read de Alaniz J, Boesel LF. Visible light-responsive materials: the (photo)chemistry and applications of donor-acceptor Stenhouse adducts in polymer science. Chem Soc Rev 2023; 52:8245-8294. [PMID: 37905554 PMCID: PMC10680135 DOI: 10.1039/d3cs00508a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 11/02/2023]
Abstract
Donor-acceptor Stenhouse adduct (DASA) photoswitches have gained a lot of attention since their discovery in 2014. Their negative photochromism, visible light absorbance, synthetic tunability, and the large property changes between their photoisomers make them attractive candidates over other commonly used photoswitches for use in materials with responsive or adaptive properties. The development of such materials and their translation into advanced technologies continues to widely impact forefront materials research, and DASAs have thus attracted considerable interest in the field of visible-light responsive molecular switches and dynamic materials. Despite this interest, there have been challenges in understanding their complex behavior in the context of both small molecule studies and materials. Moreover, incorporation of DASAs into polymers can be challenging due to their incompatibility with the conditions for most common polymerization techniques. In this review, therefore, we examine and critically discuss the recent developments and challenges in the field of DASA-containing polymers, aiming at providing a better understanding of the interplay between the properties of both constituents (matrix and photoswitch). The first part summarizes current understanding of DASA design and switching properties. The second section discusses strategies of incorporation of DASAs into polymers, properties of DASA-containing materials, and methods for studying switching of DASAs in materials. We also discuss emerging applications for DASA photoswitches in polymeric materials, ranging from light-responsive drug delivery systems, to photothermal actuators, sensors and photoswitchable surfaces. Last, we summarize the current challenges in the field and venture on the steps required to explore novel systems and expand both the functional properties and the application opportunities of DASA-containing polymers.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- University of Fribourg, Department of Chemistry, 1700 Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| | - Sara Sandlass
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Omar Rifaie-Graham
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| |
Collapse
|
4
|
Dumur F. Recent Advances in Monocomponent Visible Light Photoinitiating Systems Based on Sulfonium Salts. Polymers (Basel) 2023; 15:4202. [PMID: 37959882 PMCID: PMC10649563 DOI: 10.3390/polym15214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
During the last decades, multicomponent photoinitiating systems have been the focus of intense research efforts, especially for the design of visible light photoinitiating systems. Although highly reactive three-component and even four-component photoinitiating systems have been designed, the complexity to elaborate such mixtures has incited researchers to design monocomponent Type II photoinitiators. Using this approach, the photosensitizer and the radical/cation generator can be combined within a unique molecule, greatly simplifying the elaboration of the photocurable resins. In this field, sulfonium salts are remarkable photoinitiators but these structures lack absorption in the visible range. Over the years, various structural modifications have been carried out in order to redshift their absorptions in the visible region. In this work, an overview of the different sulfonium salts activable under visible light and reported to date is proposed.
Collapse
Affiliation(s)
- Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
5
|
Dumur F. The Future of Visible Light Photoinitiators of Polymerization for Photocrosslinking Applications. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Dong Y, Ling Y, Wang D, Liu Y, Chen X, Zheng S, Wu X, Shen J, Feng S, Zhang J, Huang W. Harnessing molecular isomerization in polymer gels for sequential logic encryption and anticounterfeiting. SCIENCE ADVANCES 2022; 8:eadd1980. [PMID: 36322650 PMCID: PMC9629717 DOI: 10.1126/sciadv.add1980] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Using smart photochromic and luminescent tissues in camouflage/cloaking of natural creatures has inspired efforts to develop synthetic stimuli-responsive materials for data encryption and anticounterfeiting. Although many optical data-encryption materials have been reported, they generally require only one or a simple combination of few stimuli for decryptions and rarely offer output corruptibility that prevents trial-and-error attacks. Here, we report a series of multiresponsive donor-acceptor Stenhouse adducts (DASAs) with unprecedented switching behavior and controlled reversibility via diamine conformational locking and substrate free-volume engineering and their capability of sequential logic encryption (SLE). Being analogous to the digital circuits, the output of DASA gel-based data-encryption system depends not only on the present input stimulus but also on the sequence of past inputs. Incorrect inputs/sequences generate substantial fake information and lead attackers to the point of no return. This work offers new design concepts for advanced data-encryption materials that operate via SLE, paving the path toward advanced encryptions beyond digital circuit approaches.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiaowei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiya Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jinghui Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, USA
- Corresponding author. (W.H.); (J.Z.)
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
- Corresponding author. (W.H.); (J.Z.)
| |
Collapse
|
7
|
Shpinov Y, Schlichter A, Pelupessy P, Le Saux T, Jullien L, Adelizzi B. Unexpected Acid-Triggered Formation of Reversibly Photoswitchable Stenhouse Salts from Donor-Acceptor Stenhouse Adducts. Chemistry 2022; 28:e202200497. [PMID: 35218266 DOI: 10.1002/chem.202200497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 01/12/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are reversibly photoswitchable dyes, which are able to interconvert between a red/NIR absorbing triene-like state and a colorless cyclic state. Although optically attractive for multiple applications, their low solubility and lack of photoswitching in water impede their use in aqueous environments. We developed water-soluble DASAs based on indoline as donor and methyl, or trifluoromethyl, pyrazolone-based acceptors. In acetonitrile, photophysical analysis and photochemical studies, accounted with a three-state kinetic model, confirmed the reversible photoswitching mechanism previously proposed. In water, the colorless cyclic state is a thermodynamic sink at neutral pH values. In contrast, in acidic conditions, we observed a fast scrambling of DASAs' end-group resulting in the in situ formation of Stenhouse salts (StS), which are in turn capable of reversible photoswitching. We believe that this unexpected result is of interest not only for the future design of DASAs with improved stability, but also for further development and applications of StS as photoswitchable probes.
Collapse
Affiliation(s)
- Yuriy Shpinov
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Antoine Schlichter
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Philippe Pelupessy
- Laboratoire de biomolécules (LBM), Département de chimie, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Beatrice Adelizzi
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
8
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
9
|
Bhandari P, Modak R, Bhattacharyya S, Zangrando E, Mukherjee PS. Self-Assembly of Octanuclear Pt II/Pd II Coordination Barrels and Uncommon Structural Isomerization of a Photochromic Guest in Molecular Space. JACS AU 2021; 1:2242-2248. [PMID: 34977895 PMCID: PMC8715494 DOI: 10.1021/jacsau.1c00361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 06/03/2023]
Abstract
Two tetragonal molecular barrels TB1 and TB2 were successfully synthesized by coordination-driven self-assembly of a tetrapyridyl donor (L) of the thiazolo[5,4-d]thiazole backbone with cis-blocked 90° Pd(II) and Pt(II) acceptors, respectively. The single-crystal structure analysis of TB1 revealed the formation of a two-face opened tetragonal Pd8 molecular barrel architecture. In contrast, the isostructural Pt(II) barrel (TB2) is water-soluble. The large confined hydrophobic molecular cavity including wide open windows and good water solubility of the barrel TB2 made it a potential molecular container for the encapsulation of guests with different sizes and properties. This has been exploited to encapsulate and stabilize the open form of a photochromic molecule (G2) in water, while the same photochromic molecule exists exclusively in a cyclic zwitterionic form in aqueous medium in the absence of the barrel TB2. This cyclic form is very stable in water and does not go back to its parent open form under common external stimuli. Surprisingly, reverse switching of the cyclic form to a colored hydrophobic open form was also possible instantly in water upon addition of the solid barrel TB2 into an aqueous solution of G2. Such a fast reverse isomerization of an irreversible process in aqueous medium by utilizing host-guest interaction of the barrel TB2 and the guest G2 is interesting. The barrel TB2 was also capable of encapsulating the water-insoluble radical initiator G1 in aqueous medium.
Collapse
Affiliation(s)
- Pallab Bhandari
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Ritwik Modak
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
|
11
|
Sabahi-Agabager L, Eskandari H, Nasiri F, Shamkhali AN, Baghi Sefidan S. Properties of a furan ring-opening reaction in aqueous micellar solutions for selective sensing of mesalazine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119846. [PMID: 33933944 DOI: 10.1016/j.saa.2021.119846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
A novel and efficient non-azo formation based method was developed for trace sensing of mesalazine (MES), a pharmaceutical aromatic amine. MES was simply coupled with a Meldrum's activated furan (MAF) reagent via a furan ring opening reaction to form a colored product. The intense purple colored solution was detected at 575 nm. The reaction of MES with MAF was monitored by employing 1H NMR spectroscopy and mass spectrometry. In addition, density functional theory (DFT) was applied to optimize the structure of the colored product and its λmax (the wavelength of maximum absorbance) in dimethyl sulfoxide and water. The colored product was considered in three possible structures, and the most possible structures in dimethyl sulfoxide and in water were identified by employing the DFT calculations. Both of the most possible structures indicated only a local excitation in their λmax and no charge transfer was observed. However, one of the structures in dimethyl sulfoxide presented charge transfer properties occurring through NCCC moiety. A univariate optimization method was also used to attain the optimum condition for analysis. In addition, the dependence of the analytical response on the three main affecting parameters (reaction time (X1), Triton X-100 concentration (X2) and MAF concentration (X3)) was identified by employing a central composite design (CCD) approach. The CCD study showed that the analytical response depends complexly on the parameters. Beer's law was obeyed within the range of 0.06-9.30 μg mL-1 of MES (155 fold linearity) at 575 nm, under the optimum condition introduced by the CCD approach. Also, the limit of detection was obtained 0.04 μg mL-1 of MES. The method showed precision (as relative standard deviation) and accuracy (as recovery) within the ranges of 0.6-3.2 % and 96.3-100.8%, respectively. Various organic and inorganic species, amino-pharmaceuticals, and amino acids were tested to evaluate the selectivity of the method. The selectivity of the analytical method was satisfactory. The method was successfully applied for detection of MES in various water matrices and pharmaceutical tablets.
Collapse
Affiliation(s)
- Leila Sabahi-Agabager
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Habibollah Eskandari
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.
| | - Farough Nasiri
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Amir Nasser Shamkhali
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Somayyeh Baghi Sefidan
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| |
Collapse
|
12
|
Mukhopadhyay S, Sarkar A, Ghoshal S, Sarkar P, Dhara K, Chattopadhyay P. Encapsulation and Stabilization of a Donor-Acceptor Stenhouse Adduct Isomer in Water Inside the Blue Box: A Combined Experimental and Theoretical Approach. J Phys Chem B 2021; 125:7222-7230. [PMID: 34181423 DOI: 10.1021/acs.jpcb.1c03890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We synthesized two types of donor-acceptor Stenhouse adducts (DASAs), a new type of photochromic molecules showing dual color in two different isomeric forms in solution phase, using Meldrum acid (DASA-Mel) and barbituric acid (DASA-Bar), along with a naphthalimide derivative to obtain interesting fluorescence properties. DASA-Mel was found to have fast photochromic conversion in comparison to DASA-Bar, evident from ultraviolet-visible (UV-vis) and fluorescence spectroscopic studies. The colored form of DASA-Mel was encapsulated inside the water-soluble Stoddart's blue box and became soluble in water much faster than DASA-Bar. Interestingly, the competitive encapsulation experiment showed that DASA-Mel was selectively encapsulated inside the blue box in water whereas DASA-Bar was mostly separated out from the solution after centrifugation, and this phenomenon was confirmed by 1H and DOSY NMR and mass spectroscopies. Moreover, we found through density functional theory (DFT) optimization that the open form of DASA-Mel was more stable during the encapsulation reaction in a water medium in comparison to DASA-Bar. The calculated binding energies of encapsulated DASA-Mel and DASA-Bar are -10.2 and -9.9 kcal/mol, respectively, clearly showing that the former is more stable by 0.3 kcal. Consequently, the organic macrocycle selectively separating one kind of DASA from a mixture by encapsulation in water is reported for the first time with experimental and theoretical support in the literature.
Collapse
Affiliation(s)
- Sujay Mukhopadhyay
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Arnab Sarkar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Koushik Dhara
- Department of Chemistry, Sambhu Nath College, Labpur, Birbhum 731303, West Bengal, India
| | - Pabitra Chattopadhyay
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| |
Collapse
|
13
|
Kulhánek J, Pytela O, Bureš F, Klikar M. Small Heterocyclic D‐π‐D‐π‐A Push‐Pull Molecules with Complex Electron Donors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiří Kulhánek
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Oldřich Pytela
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Filip Bureš
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Milan Klikar
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| |
Collapse
|
14
|
Duan Y, Zhao H, Xiong C, Mao L, Wang D, Zheng Y. Learning from Spiropyrans: How to Make Further Developments of
Donor‐Acceptor
Stenhouse Adducts. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yongli Duan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Haiquan Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Chaoyue Xiong
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Lijun Mao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| |
Collapse
|
15
|
Caron A, Noirbent G, Gigmes D, Dumur F, Lalevée J. Near‐Infrared PhotoInitiating Systems: Photothermal versus Triplet–Triplet Annihilation‐Based Upconversion Polymerization. Macromol Rapid Commun 2021; 42:e2100047. [DOI: 10.1002/marc.202100047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Aurore Caron
- Université de Haute‐Alsace CNRS, IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg 67000 France
| | | | - Didier Gigmes
- Aix Marseille Univ CNRS, ICR UMR 7273 Marseille F‐13397 France
| | - Frédéric Dumur
- Aix Marseille Univ CNRS, ICR UMR 7273 Marseille F‐13397 France
| | - Jacques Lalevée
- Université de Haute‐Alsace CNRS, IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg 67000 France
| |
Collapse
|
16
|
|