1
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Morales MV, Conesa JM, Campos-Castellanos E, Guerrero-Ruiz A, Rodríguez-Ramos I. Critical Factors Affecting the Selective Transformation of 5-Hydroxymethylfurfural to 3-Hydroxymethylcyclopentanone Over Ni Catalysts. CHEMSUSCHEM 2024:e202400559. [PMID: 38860533 DOI: 10.1002/cssc.202400559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
The ring-rearrangement of 5-hydroxymethylfurfural (HMF) to 3-hydroxymethylcyclopentanone (HCPN) was investigated over Ni catalysts supported on different carbon supports and metallic oxides with different structure and acid-base properties. Their catalytic performance was tested in a batch stirred reactor in aqueous solution at 180 °C and 30 bar of H2. Under these conditions, the HMF hydrogenation proceeds through three possible competitive routes: (i) a non-water path leading to the total hydrogenation product, 2,5-di-hydroxymethyl-tetrahydrofuran (DHMTHF), and two parallel acid-catalyzed water-mediated routes responsible for (ii) ring-opening and (iii) ring-rearrangement reaction products. All catalyst systems primarily produced HCPN, but reaction rates and product distribution were influenced by several variables, some of them intensely analyzed in this work. The most proper conditions resulted to be the presence of the medium/strong Lewis's acidity of a Ni/ZrO2 catalyst (initial TOF=5.99 min-1 and 73 % HCPN selectivity) or the Brønsted acidity originated by an oxidized high surface area graphite, Ni/HSAG-ox (initial TOF=5.92 min-1 and 87 % HCPN selectivity). However, too high density of acidic sites on the catalyst support (Ni/Al2O3) and sulfur impurities from the HMF feedstock led to catalyst deactivation by coke deposition and Ni poisoning, respectively.
Collapse
Affiliation(s)
- María V Morales
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049, Madrid, Spain
- Departamento de Química Inorgánica y Química Técnica, UNED, 28232, Las Rozas, Madrid, Spain
| | - José M Conesa
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049, Madrid, Spain
- Departamento de Química Inorgánica y Química Técnica, UNED, 28232, Las Rozas, Madrid, Spain
| | | | - Antonio Guerrero-Ruiz
- Departamento de Química Inorgánica y Química Técnica, UNED, 28232, Las Rozas, Madrid, Spain
- Grupo de Diseño y Aplicación de Catalizadores Heterogéneos, Unidad Asociada UNED-CSIC (ICP), Spain
| | - Inmaculada Rodríguez-Ramos
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049, Madrid, Spain
- Grupo de Diseño y Aplicación de Catalizadores Heterogéneos, Unidad Asociada UNED-CSIC (ICP), Spain
| |
Collapse
|
3
|
Duan Y, Cheng Y, Hu Z, Wang C, Sui D, Yang Y, Lu T. A Comprehensive Review on Metal Catalysts for the Production of Cyclopentanone Derivatives from Furfural and HMF. Molecules 2023; 28:5397. [PMID: 37513268 PMCID: PMC10383880 DOI: 10.3390/molecules28145397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The catalytic transformation of biomass-based furan compounds (furfural and HMF) for the synthesis of organic chemicals is one of the important ways to utilize renewable biomass resources. Among the numerous high-value products, cyclopentanone derivatives are a kind of valuable compound obtained by the hydrogenation rearrangement of furfural and HMF in the aqueous phase of metal-hydrogen catalysis. Following the vast application of cyclopentanone derivatives, this reaction has attracted wide attention since its discovery, and a large number of catalytic systems have been reported to be effective in this transformation. Among them, the design and synthesis of metal catalysts are at the core of the reaction. This review briefly introduces the application of cyclopentanone derivatives, the transformation mechanism, and the pathway of biomass-based furan compounds for the synthesis of cyclopentanone derivatives. The important progress of metal catalysts in the reaction since the first report in 2012 up to now is emphasized, the characteristics and catalytic performance of different metal catalysts are introduced, and the critical role of metal catalysts in the reaction is discussed. Finally, the future development of this transformation process was prospected.
Collapse
Affiliation(s)
- Ying Duan
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yiyi Cheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chenxu Wang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Dong Sui
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Yanliang Yang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Tianliang Lu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Morales MV, Conesa JM, Galvin AJ, Guerrero-Ruiz A, Rodríguez-Ramos I. Selective hydrogenation reactions of 5-hydroxymethylfurfural over Cu and Ni catalysts in water: effect of Cu and Ni combination and the reagent purity. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Zhang C, Lv X, Zhang X, Huo S, Song H, Guan Y, Gao X. Progress in Selective Conversion of 5‐Hydroxymethylfurfural to DHMF and DMF. ChemistrySelect 2022. [DOI: 10.1002/slct.202201255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chi Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xuechuan Lv
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaofan Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
- Olefin Factory of Fushun Petrochemical Company Petrochina, Fushun 113001, Liaoning China
| | - Sihan Huo
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Hanlin Song
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Yining Guan
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaohan Gao
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| |
Collapse
|
6
|
Longo L, Taghavi S, Ghedini E, Menegazzo F, Di Michele A, Cruciani G, Signoretto M. Selective Hydrogenation of 5-Hydroxymethylfurfural to 1-Hydroxy-2,5-hexanedione by Biochar-Supported Ru Catalysts. CHEMSUSCHEM 2022; 15:e202200437. [PMID: 35394696 DOI: 10.1002/cssc.202200437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The development of sustainable and efficient catalysts -namely Ru supported on activated biochars- is carried out for the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 1-hydroxy-2,5-hexanedione (HHD). Activated biochars obtained from pyrolysis and steam-based physical activation of two different biomasses from animal (leather tannery waste; ALw ) and vegetal (hazelnut shells; AHSw ) origins show completely different chemical, textural, and morphological properties. Compared to ALw , after impregnation with 0.5 wt % Ru, AHSw , with inner micro-mesochannels and cavities and higher layer stacking disorder, leads to better trapping and anchoring of Ru nanoparticles on the catalyst and a suitable Ru single crystal dispersion. This leads to a highly active Ru/AHSw catalyst in the proposed reaction, giving more than 80 % selectivity to HHD and full HMF conversion at 100 °C with 30 bar H2 for 3 h. Ru/AHSw also shows promising performance compared to a commercial Ru/C catalyst.
Collapse
Affiliation(s)
- Lilia Longo
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Somayeh Taghavi
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Elena Ghedini
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Federica Menegazzo
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy
| | - Giuseppe Cruciani
- Department of Physics and Earth Science, University of Ferrara, Via Saragat 1, 44122, Ferrara, Italy
| | - Michela Signoretto
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| |
Collapse
|
7
|
Duan Y, Wang R, Liu Q, Qin X, Li Z. Tungsten Promoted Ni/Al2O3 as a Noble-Metal-Free Catalyst for the Conversion of 5-Hydroxymethylfurfural to 1-Hydroxy-2,5-Hexanedione. Front Chem 2022; 10:857199. [PMID: 35355788 PMCID: PMC8959628 DOI: 10.3389/fchem.2022.857199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
The conversion of 5-hydroxymethylfurfural (HMF) to 1-hydroxy-2,5-hexanedione (HHD) represented a typical route for high-value utilization of biomass. However, this reaction was often catalyzed by the noble metal catalyst. In this manuscript, W promoted Ni/Al2O3 was prepared as a noble-metal-free catalyst for this transformation. The catalysts were characterized by XRD, XPS, NH3-TPD, TEM, and EDS-mapping to study the influence of the introduction of W. There was an interaction between Ni and W, and strong acid sites were introduced by the addition of W. The W promoted Ni/Al2O3 showed good selectivity to HHD when used as a catalyst for the hydrogenation of HMF in water. The influences of the content of W, temperature, H2 pressure, reaction time, and acetic acid (AcOH) were studied. NiWOx/Al2O3-0.5 (mole ratio of W:Ni = 0.5) was found to be the most suitable catalyst. The high selectivity to HHD was ascribed to the acid sites introduced by W. This was proved by the fact that the selectivity to HHD was increased a lot when AcOH was added just using Ni/Al2O3 as catalysts. 59% yield of HHD was achieved on NiWOx/Al2O3-0.5 at 393 K, 4 MPa H2 reacting for 6 h, which was comparable to the noble metal catalyst, showing the potential application in the production of HHD from HMF.
Collapse
Affiliation(s)
- Ying Duan
- College of Food and Drug, Luoyang Normal University, Luoyang, China
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
- *Correspondence: Ying Duan,
| | - Rui Wang
- College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Qihang Liu
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Xuya Qin
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Zuhuan Li
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| |
Collapse
|
8
|
Preparation of COFs Supported Pd as an Efficient Catalyst for the Hydrogenation of Aromatic Nitro. Catal Letters 2022. [DOI: 10.1007/s10562-022-03941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Zhang C, Li Y, Lv X, Gao X, Duan Y, Sui D, Yang Y. Catalytic Hydrogenation of 5‐Hydroxymethylfurfural to Hexanetriol. ChemistrySelect 2022. [DOI: 10.1002/slct.202103797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chi Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Yueju Li
- College of Food and Drug Luoyang Normal University Luoyang 471934 China
| | - Xuechuan Lv
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaohan Gao
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Ying Duan
- College of Food and Drug Luoyang Normal University Luoyang 471934 China
| | - Dong Sui
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Yanliang Yang
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| |
Collapse
|
10
|
Catalytic Conversion of Glycerol to Methyl Lactate over Au-CuO/Sn-Beta: The Roles of Sn-Beta. Catalysts 2022. [DOI: 10.3390/catal12010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The production of methyl lactate as a degradable polymer monomer from biomass was an important topic for a sustainable society. In this manuscript, glycerol was oxidated to methyl lactate catalyzed by the combination of Au-CuO and Sn-Beta. The influence of Sn content, Sn source, and the preparation conditions for Sn-β was studied. The Au content in Au/CuO was also investigated by varying the Au content in Au/CuO. The catalysts were characterized by XRD, FTIR spectroscopy of pyridine adsorption, and TEM to study the role of Sn and the influence of different parameters for catalyst preparation. After the optimization of reaction parameters, the yield of methyl lactate from glycerol reached 59% at 363 K after reacting in 1.6 MPa of O2 for 6 h.
Collapse
|
11
|
Duan Y, Ma Y, Xie Y, Li D, Deng D, Zhang C, Yang Y. Preparation of PdAuCu/C as a Highly Active Catalyst for the Reduction of 4‐Nitrophenol by Controlling the Deposition of Noble Metals. Chem Asian J 2020. [DOI: 10.1002/asia.202001241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ying Duan
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 P. R. China
- College of Food and Drug Luoyang Normal University Luoyang 471934 P. R. China
| | - Yangyang Ma
- College of Food Science and Technology Henan Agricultural University No.95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Yanfu Xie
- College of Food and Drug Luoyang Normal University Luoyang 471934 P. R. China
| | - Dongmi Li
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 P. R. China
| | - Dongsheng Deng
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 P. R. China
| | - Chi Zhang
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 P. R. China
| | - Yanliang Yang
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 P. R. China
| |
Collapse
|
12
|
Yang Y, Duan Y, Deng D, Li D, Sui D, Gao X. Cu@Pd/C with Controllable Pd Dispersion as a Highly Efficient Catalyst for Hydrogen Evolution from Ammonia Borane. NANOMATERIALS 2020; 10:nano10091850. [PMID: 32947821 PMCID: PMC7558311 DOI: 10.3390/nano10091850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
A series of Cu@Pd/C with different Pd contents was prepared using the galvanic reduction method to disperse Pd on the surface of Cu nanoparticles on Cu/C. The dispersion of Pd was regulated by the Cu(I) on the surface, which was introduced by pulse oxidation. The Cu2O did not react during the galvanic reduction process and restricted the Pd atoms to a specific area. The pulse oxidation method was demonstrated to be an effective process to control the oxidization degree of Cu on Cu/C and then to govern the dispersion of Pd. The catalysts were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscope (HRTEM), high angular annular dark field scanning TEM (HAADF-STEM), energy-dispersive spectroscopy (EDS) mapping, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), and inductively coupled plasma optical emission spectrometer (ICP-OES), which were used to catalyze the hydrogen evolution from ammonia borane. The Cu@Pd/C had much higher activity than the PdCu/C, which was prepared by the impregnation method. The TOF increased as the Cu2O in Cu/C used for the preparation of Cu@Pd/C increased, and the maximum TOF was 465 molH2 min-1 molPd-1 at 298 K on Cu@Pd0.5/C-640 (0.5 wt % of Pd, 640 mL of air was pulsed during the preparation of Cu/C-640). The activity could be maintained in five continuous processes, showing the strong stability of the catalysts.
Collapse
Affiliation(s)
- Yanliang Yang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.D.); (D.L.); (D.S.)
- Correspondence: (Y.Y.); (X.G.)
| | - Ying Duan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China;
| | - Dongsheng Deng
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.D.); (D.L.); (D.S.)
| | - Dongmi Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.D.); (D.L.); (D.S.)
| | - Dong Sui
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.D.); (D.L.); (D.S.)
| | - Xiaohan Gao
- School of Chemistry and Material Science, College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
- Correspondence: (Y.Y.); (X.G.)
| |
Collapse
|