1
|
Morelli MB, Caviglia M, Santini C, Del Gobbo J, Zeppa L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Battocchio C, Bertelà F, Amatori S, Meneghini C, Iucci G, Venditti I, Dolmella A, Di Palma M, Pellei M. Copper-Based Complexes with Adamantane Ring-Conjugated bis(3,5-Dimethyl-pyrazol-1-yl)acetate Ligand as Promising Agents for the Treatment of Glioblastoma. J Med Chem 2024; 67:9662-9685. [PMID: 38831692 DOI: 10.1021/acs.jmedchem.4c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The new ligand L2Ad, obtained by conjugating the bifunctional species bis(3,5-dimethylpyrazol-1-yl)-acetate and the drug amantadine, was used as a chelator for the synthesis of new Cu complexes 1-5. Their structures were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and by combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modeling. The structure of complex 3 was determined by single-crystal X-ray diffraction analysis. Tested on U87, T98, and U251 glioma cells, Cu(II) complex 3 and Cu(I) complex 5 decreased cell viability with IC50 values significantly lower than cisplatin, affecting cell growth, proliferation, and death. Their effects were prevented by treatment with the Cu chelator tetrathiomolybdate, suggesting the involvement of copper in their cytotoxic activity. Both complexes were able to increase ROS production, leading to DNA damage and death. Interestingly, nontoxic doses of 3 or 5 enhanced the chemosensitivity to Temozolomide.
Collapse
Affiliation(s)
- Maria Beatrice Morelli
- School of Pharmacy, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Jo' Del Gobbo
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Laura Zeppa
- School of Pharmacy, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Federica Bertelà
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Simone Amatori
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Carlo Meneghini
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Giovanna Iucci
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Iole Venditti
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Michele Di Palma
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| |
Collapse
|
2
|
Al-Mahadeen MM, Jaber AM, Al-Qawasmeh RA, Taha MO. Synthesis, evaluation, and docking study of adamantyl-1,3,4-oxadiazol hybrid compounds as CaMKIIδ kinase inhibitor. JOURNAL OF CHEMICAL RESEARCH 2024; 48. [DOI: 10.1177/17475198241262467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This study revealed a new inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), a crucial factor in cardiovascular disease and hypertension. The study focuses on the bioactivity compounds that combine adamantane/1,3,4-oxadiazole, potentially inhibiting CaMKIIδ. Various adamantyl-1,3,4-oxadiazole derivatives were synthesized and tested for their efficiency against CaMKIIδ kinase, with 6f being the most potent with an IC50 value of 14.4 μM. Docking studies were carried out to determine the binding processes of these chemicals within the kinase’s active region. These discoveries are an important step toward the development of novel treatments for cardiovascular illnesses and hypertension, with the potential for more precise and efficient therapeutic interventions in the future.
Collapse
Affiliation(s)
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Raed A Al-Qawasmeh
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, Jordan
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, UAE
| | - Mutasem O Taha
- Drug Discovery Unit, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Ragshaniya A, Kumar V, Tittal RK, Lal K. Nascent pharmacological advancement in adamantane derivatives. Arch Pharm (Weinheim) 2024; 357:e2300595. [PMID: 38128028 DOI: 10.1002/ardp.202300595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
The adamantane moiety has attracted significant attention since its discovery in 1933 due to its remarkable structural, chemical, and medicinal properties. This molecule has a notable impact in the therapeutic field because of its "add-on" lipophilicity to any pharmacophoric moieties. As in the case of molecular hybridization, in which one pharmacophore is attached to another one(s) with a probability of increasing the biological activity, adding an adamantane unit improves the absorption distribution, metabolism and excretion properties of the resultant hybrid molecule. This review summarizes various reports highlighting the biological activities of adamantane-based synthetic compounds and their structure-activity relationship study. The information presented in this review may open up possible dimensions for adamantane-based drug development and discovery in the pharmaceutical industry after proper structural modifications.
Collapse
Affiliation(s)
- Aman Ragshaniya
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| |
Collapse
|
4
|
Jaber AM, Al-Mahadeen MM, Al-Qawasmeh RA, Taha MO. Synthesis, anticancer evaluation and docking studies of novel adamantanyl-1,3,4-oxadiazol hybrid compounds as Aurora-A kinase inhibitors. Med Chem Res 2023; 32:2394-2404. [DOI: 10.1007/s00044-023-03145-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 07/10/2024]
|
5
|
Abdolmaleki S, Panjehpour A, Aliabadi A, Khaksar S, Motieiyan E, Marabello D, Faraji MH, Beihaghi M. Cytotoxicity and mechanism of action of metal complexes: An overview. Toxicology 2023; 492:153516. [PMID: 37087063 DOI: 10.1016/j.tox.2023.153516] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
After the discovery of cisplatin, many metal compounds were investigated for the therapy of diseases, especially cancer. The high therapeutic potential of metal-based compounds is related to the special properties of these compounds, such as their redox activity and ability to target vital biological sites. The overproduction of ROS and the consequent destruction of the membrane potential of mitochondria and/or the DNA helix is one of the known pathways leading to the induction of apoptosis by metal complexes. The apoptosis process can occur via the death receptor pathway and/or the mitochondrial pathway. The expression of Bcl2 proteins and the caspase family play critical roles in these pathways. In addition to apoptosis, autophagy is another process that regulates the suppression or promotion of various cancers through a dual action. On the other hand, the ability to interact with DNA is an important property found in several metal complexes with potent antiproliferative effects against cancer cells. These interactions were classified into two important categories: covalent/coordinated or subtle, and non-coordinated interactions. The anticancer activity of metal complexes is sometimes achieved by the simultaneous combination of several mechanisms. In this review, the anticancer effect of metal complexes is mechanistically discussed by different pathways, and some effective agents on their antiproliferative properties are explained.
Collapse
Affiliation(s)
- Sara Abdolmaleki
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Akram Panjehpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samad Khaksar
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Elham Motieiyan
- Department of Chemistry, Payame Noor University, P. O. BOX 19395-4697, Tehran, Iran
| | - Domenica Marabello
- Dipartimento di Chimica, University of Torino Via P. Giuria 7, 10125 Torino, Italy; Interdepartmental Centre for Crystallography, University of Torino, Italy
| | - Mohammad Hossein Faraji
- Physiology Division, Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maria Beihaghi
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia; Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| |
Collapse
|
6
|
Ajaz A, Shaheen MA, Ahmed M, Munawar KS, Siddique AB, Karim A, Ahmad N, Rehman MFU. Synthesis of an amantadine-based novel Schiff base and its transition metal complexes as potential ALP, α-amylase, and α-glucosidase inhibitors. RSC Adv 2023; 13:2756-2767. [PMID: 36756442 PMCID: PMC9846949 DOI: 10.1039/d2ra07051k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
A Schiff base ligand HL, (E)-2-((adamantan-1-ylimino)methyl)-6-allylphenol, was synthesized by condensation of amantadine with 3-allyl-2-hydroxybenzaldehyde, followed by the synthesis of its Zn(ii), Co(ii), Cr(iii), and VO(iv) complexes under reflux conditions. The synthesized compounds were comprehensively elucidated by using different spectroscopic and analytical techniques: UV-Vis, 1H and 13C-NMR, FT-IR, ESI-MS, thermal, and single-crystal XRD analysis. The chemical composition of the synthesized compounds was also verified by molar conductance and elemental analysis. An octahedral geometry for Cr(iii) and Co(ii) complexes, tetrahedral for Zn(ii) complex, and square pyramidal geometry have been proposed for VO(iv) complexes. The antidiabetic activities of the synthesized compounds were also evaluated by performing in vitro α-amylase and α-glucosidase inhibition studies. The Co(ii) complex exhibited the highest α-glucosidase inhibitory activity, whereas oxovanadium(iv) and zinc(ii) complexes were also found to be effective against α-amylase. In alkaline phosphatase (ALP) inhibition studies, the HL was found to be inactive, while the complexes showed remarkable enzyme inhibition in the following order: VO > Zn > Co, in a concentration-dependent manner.
Collapse
Affiliation(s)
- Aliya Ajaz
- Institute of Chemistry, University of Sargodha 40100 Pakistan
| | | | - Maqsood Ahmed
- Materials Chemistry Laboratory, Institute of Chemistry, The Islamia University of Bahawalpur Baghdad-ul-Jadeed Campus 63100 Pakistan
| | - Khurram Shahzad Munawar
- Institute of Chemistry, University of Sargodha 40100 Pakistan .,Department of Chemistry, University of Mianwali Mianwali 42200 Pakistan
| | | | - Abdul Karim
- Institute of Chemistry, University of Sargodha 40100 Pakistan
| | - Nazir Ahmad
- Department of Chemistry, Government College University Lahore Lahore 54000 Pakistan
| | | |
Collapse
|
7
|
Aliabadi A, Zangeneh M, Izadi Z, Badzohre M, Ghadermazi M, Marabello D, Bagheri F, Farokhi A, Motieiyan E, Abdolmaleki S. Green synthesis, X-ray crystal structure, evaluation as in vitro cytotoxic and antibacterial agents of a new Zn(II) complex containing dipicolinic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Cd(II) coordination polymer of fumaric acid and pyridyl-hydrazide Schiff base: Structure, photoconductivity and theoretical interpretation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|