1
|
Paul A, Liu P, G Mahmoud A, Rakočević L, C B A Alegria E, Khan RA, C Guedes da Silva MF, Wang Z, J L Pombeiro A. Highly efficient Cu(II) coordination polymer catalyst for the conversion of hazardous volatile organic compounds. CHEMOSPHERE 2024; 364:143001. [PMID: 39121961 DOI: 10.1016/j.chemosphere.2024.143001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Three novel coordination polymers (CPs), namely [Cu(μ-1κO,2κN-L)2]n (1), [Zn (μ-1κO,2κN-L)2(H2O)2]n (2) and [Cd (μ-1κOO',2κN-L)2]n (3) [where HL = 4-(pyrimidin-5-ylcarbamoyl)benzoic acid], were synthesized and characterized by elemental analysis, ATR-IR, TGA, XPS and single-crystal X-ray diffraction. Despite having the same organic ligand, the various metal cations had an impact in the subsequent frameworks. Hirshfeld surface analysis was performed to investigate the intermolecular interactions and to examine the stability of the crystal structures of the three polymers. Their catalytic performances were screened for the peroxidative oxidation of Volatile Organic Compounds (VOCs), with toluene and p-xylene selected as model substrates. Tert-butyl hydroperoxide (t-BuOOH or TBHP) (aq. 70 %) was employed as the oxidant. The catalytic oxidation of toluene yielded benzyl alcohol, benzaldehyde and benzoic acid. The copper CP 1 exhibited the highest total yield for toluene oxidation, reaching approximately 36% in an aqueous medium. For p-xylene oxidation, tolualdehyde, methylbenzyl alcohol, and toluic acid were produced as the primary products, accompanied by minor ones. The experiments were conducted under diverse conditions, manipulating key parameters such as the choice of solvent (water or acetonitrile), type of oxidant (t-BuOOH or H2O2), the concentration of the oxidant and reaction temperature. In the presence of catalyst 1, a maximum total yield of ca. 80% was achieved for p-xylene oxidation.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal.
| | - Peixi Liu
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal; State Key Laboratory of Clean Energy Utilization, Zhejiang University, 310027, Hangzhou, PR China
| | - Abdallah G Mahmoud
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal; Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Lazar Rakočević
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000, Belgrade, Serbia
| | - Elisabete C B A Alegria
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal; Departamento de Engenharia Química, ISEL, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Portugal.
| | - Rais Ahmad Khan
- Department of Chemistry, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal; Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Zhihua Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 310027, Hangzhou, PR China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| |
Collapse
|
2
|
Visible Light‐Promoted Fluorescein/Ni‐Catalyzed Synthesis of Bis‐(β‐Dicarbonyls) using Olefins as a Methylene Bridge Synthon. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Ranjan R, Chakraborty A, Kyarikwal R, Ganguly R, Mukhopadhyay S. A binuclear Cu(II) complex as an efficient photocatalyst for N-alkylation of aromatic amines. Dalton Trans 2022; 51:13288-13300. [PMID: 35983724 DOI: 10.1039/d2dt01771g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light driven photoreactions using transition metal complexes as catalysts are currently a research hotspot in developing environmentally friendly sustainable processes. To develop a potential copper-based photocatalyst, a binuclear Cu(II) complex has been synthesized using a Mannich base ligand viz. 2,4-dichloro-6-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)phenol (H2L). The photocatalyst has been characterized using ESI-MS and single crystal X-ray diffraction. Under the irradiation of visible light, the catalyst can catalyze hydrogen auto-transfer in N-alkylated amine formation and benzyl alcohol oxidation reactions with excellent conversion. A plausible mechanistic pathway for catalytic reactions has been explored through ESI-MS spectrometric, UV-Vis spectroscopic and computational studies.
Collapse
Affiliation(s)
- Rishi Ranjan
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| | - Argha Chakraborty
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| | - Reena Kyarikwal
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| | | | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
4
|
Oliveri IP, Consiglio G, Munzi G, Failla S, Di Bella S. Deaggregation properties and transmetalation studies of a zinc(II) salen-type Schiff-base complex. Dalton Trans 2022; 51:11859-11867. [PMID: 35876090 DOI: 10.1039/d2dt01448c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reports the synthesis and the deaggregation properties of a Lewis acidic Zn(II) salen-type Schiff-base complex derivative from diaminomaleonitrile and a systematic detailed study of its transmetalation with other metal ions in solution. In a solution of non-coordinating solvents, the complex is in a dimeric form, while in coordinating solvents or upon addition of a Lewis base it is stabilized as monomeric adducts. Experiments done in two solvents with different Lewis basicities indicate a major role of the stability of the starting adduct in transmetalation. Thus, using nitrate or perchlorate salts, acetonitrile solutions of the complex give an immediate and complete transmetalation with Cu2+, while with Co2+ and Ni2+ a much slower transmetalation rate is observed. Instead, using chloride salts a fast and complete transmetalation is observed for divalent ions of the first transition series (Mn2+, Fe2+, Co2+, Ni2+, Cu2+), indicating the role of the chloride in stabilizing the transition state of the transmetalation. On the other hand, DMF solutions of the complex are less prone to transmetalation, according with the greater basicity of the solvent and, hence, the greater stability of the related adducts with the complex. Therefore, the nature of the solvent and the counteranion allow controlling the transmetalation process of this Zn(II) Schiff-base complex.
Collapse
Affiliation(s)
- Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Gabriella Munzi
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
5
|
Ranjan R, Kundu BK, Kyarikwal R, Ganguly R, Mukhopadhyay S. Synthesis of Cu(II) complexes by N,O‐donor ligand transformation and their catalytic role in visible‐light‐driven alcohol oxidation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rishi Ranjan
- Department of Chemistry, School of Basic Sciences Indian Institute of Technology Indore Indore India
| | - Bidyut Kumar Kundu
- Department of Chemistry, School of Applied Science Centurion University of Technology and Management Bhubaneswar India
| | - Reena Kyarikwal
- Department of Chemistry, School of Basic Sciences Indian Institute of Technology Indore Indore India
| | - Rakesh Ganguly
- Department of Chemistry Shiv Nadar University Greater Noida India
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences Indian Institute of Technology Indore Indore India
- Department of Biosciences and Biomedical Engineering, School of Engineering Indian Institute of Technology Indore Indore India
| |
Collapse
|
6
|
1D Zn(II) Coordination Polymers as Effective Heterogeneous Catalysts in Microwave-Assisted Single-Pot Deacetalization-Knoevenagel Tandem Reactions in Solvent-Free Conditions. Catalysts 2021. [DOI: 10.3390/catal11010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The new 1D CPs [Zn(L1)(H2O)4]n.nH2O (1) and [Zn(L2)(H2O)2]n (2) [L1 = 1,1′-(ethane-1,2-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic acid); L2 = 1,1′-(propane-1,3-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic acid)] were prepared from flexible dicarboxylate pro-ligands (H2L1 and H2L2). Both CPs 1 and 2 were characterized by elemental, FTIR, and powder X-ray diffraction analysis. Their geometry and the structural features were unveiled by single-crystal X-ray diffraction analysis. The underlying topology of the CPs was illustrated by the topological analysis of the H-bonded structure of CP 1, which revealed a 3,4,6-connected trinodal net. On the other hand, topological analysis on the hydrogen-bonded network of CP 2 showed a 2,3,3,4,6,7-connected hexanodal net. The thermal stability of the CPs was investigated by thermogravimetric analysis. CPs 1 and 2 act as heterogeneous catalysts in one-pot tandem deacetalization–Knoevenagel condensation reactions under environmentally mild conditions. CPs 1 exhibits a yield of ca. 91% in a microwave-assisted solvent-free medium, whereas a slightly lower yield was obtained for CP 2 (87%) under the same experimental protocol. The recyclability of catalyst 1 was also assessed. To our knowledge, these are the first Zn(II)-based CPs to be applied as heterogeneous catalysts for the above tandem reactions under environmentally friendly conditions.
Collapse
|
7
|
Paul A, Upadhyay KK, Backović G, Karmakar A, Vieira Ferreira LF, Šljukić B, Montemor MF, Guedes da Silva MFC, Pombeiro AJL. Versatility of Amide-Functionalized Co(II) and Ni(II) Coordination Polymers: From Thermochromic-Triggered Structural Transformations to Supercapacitors and Electrocatalysts for Water Splitting. Inorg Chem 2020; 59:16301-16318. [PMID: 33100004 DOI: 10.1021/acs.inorgchem.0c02084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The new 2D coordination polymers (CPs) [M(L)2(H2O)2]n [M = CoII (1) and NiII (2); L = 4-(pyridin-3-ylcarbamoyl)benzoate] were synthesized from pyridyl amide-functionalized benzoic acid (HL). They were characterized by elemental, Fourier transform infrared, thermogravimetric, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (XRD) structural analyses. Single-crystal XRD analysis revealed the presence of a 2D polymeric architecture, and topological analyses disclose a 2,4-connected binodal net. A thermochromic effect leads to the production of two new CPs, 1' and 2', by heating at ca. 220 °C, accompanied by a color change from orange to purple in the case of 1 and from blue to green in the case of 2. The transformation of 1 to 1' takes place through an intermediate (1a) with a different twist of the L- ligand, leading to the formation of a 1D polymeric architecture, as proven by single-crystal XRD analysis. The addition of water or keeping 1' or 2' in air for several days leads to regeneration of 1 or 2, respectively. The thermochromic-triggered structural transformations of 1 and 2 were further substantiated by PXRD and UV-vis ground-state diffuse-reflectance absorption studies. The supercapacitance ability of the CPs 1 and 2 and a Ni-Co composite (made from mixing the CPs 1 and 2) was investigated by electroanalytical techniques, such as cyclic voltammetry and electrochemical impedance spectroscopy. The CP 2 exhibits the highest specific capacity of 273.8 C g-1 at an applied current density of 1.5 A g-1. These newly developed CPs further act as electrocatalysts for the water-splitting reaction.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Kush K Upadhyay
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,1049-001 Lisboa, Portugal
| | - Gordana Backović
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Luís F Vieira Ferreira
- Centro de Química-Física Molecular, Institute for Nanosciences and Nanotechnologies, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Biljana Šljukić
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria F Montemor
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,1049-001 Lisboa, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| |
Collapse
|
8
|
Paul A, Das K, Karmakar A, Guedes da Silva MFC, Pombeiro AJL. A mechanistic insight into the rapid and selective removal of Congo Red by an amide functionalised Zn(ii) coordination polymer. Dalton Trans 2020; 49:12970-12984. [PMID: 32936184 DOI: 10.1039/d0dt02172e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New CPs [Zn(μ-1κOO':2κN-L)(H2O)(BDC)0.5]n·n(DMF) (1), [Cd(μ-1κO:2κN-L)2(H2O)2]n (2), and [Pb(μ-1κOO':2κO'-L)(μ-1κO:2κO':3κN-L)]n (3) [L = 4-(pyridin-3-ylcarbamoyl)benzoate; BDC = benzene-1,4-dicarboxylate] were synthesized and characterized by elemental, FT-IR, powder, and single-crystal X-ray diffraction analyses. Single crystal X-ray diffraction analysis discloses 1D polymeric architectures for 1 and 2 and a 2D one for 3. The topological analysis exemplifies a 2,2,3-connected 3-nodal net with the point symbol {82·12}2{8}3 for 1, a 2,4-connected bimodal net for 2, and a 3,4,7-connected trinodal net for 3. CP 1 shows a selective removal of the Congo Red (CR) dye amongst various dyes. It can be recycled and reused without any significant loss of its dye removal efficiency. An insight into the selective removal of the Congo dye is provided by in silico studies, being accounted for by anion-π, cation-π, and π-π stacking interactions, involving the Zn(ii) ion, phenyl rings, and Ocarboxylate of L, and the phenyl rings, naphthalene rings, and Osulfonate of CR.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutura, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|