1
|
Chen J, Yao Y, Mao X, Chen Y, Ni F. Liver-targeted delivery based on prodrug: passive and active approaches. J Drug Target 2024; 32:1155-1168. [PMID: 39072411 DOI: 10.1080/1061186x.2024.2386416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The liver, a central organ in human metabolism, is often the primary target for drugs. However, conditions such as viral hepatitis, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC) present substantial health challenges worldwide. Existing treatments, which suffer from the non-specific distribution of drugs, frequently fail to achieve desired efficacy and safety, risking unnecessary liver harm and systemic side effects. PURPOSE The aim of this review is to synthesise the latest progress in the design of liver-targeted prodrugs, with a focus on passive and active targeting strategies, providing new insights into the development of liver-targeted therapeutic approaches. METHODS This study conducted an extensive literature search through databases like Google Scholar, PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), systematically collecting and selecting recent research on liver-targeted prodrugs. The focus was on targeting mechanisms, including the Enhanced Permeability and Retention (EPR) effect, the unique microenvironment of liver cancer, and active targeting through specific transporters and receptors. RESULTS Active targeting strategies achieve precise drug delivery by binding specific ligands to liver surface receptors. Passive targeting takes advantage of the EPR effect and tumour characteristics to enrich drugs in liver tumours. The review details successful cases of using small molecule ligands, peptides, antibodies and nanoparticles as drug carriers. CONCLUSION Liver-targeted prodrug strategies show great potential in enhancing the efficacy of drug treatment and reducing side effects for liver diseases. Future research should balance the advantages and limitations of both targeting strategies, focusing on optimising drug design and targeting efficiency, especially for clinical application. In-depth research on liver-specific receptors and the development of innovative targeting molecules are crucial for advancing the field of liver-targeted prodrugs.
Collapse
Affiliation(s)
- Jiaqi Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingrui Yao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoran Mao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Cheng X, Li P, Jiang R, Meng E, Wu H. ADC: a deadly killer of platinum resistant ovarian cancer. J Ovarian Res 2024; 17:196. [PMID: 39367438 PMCID: PMC11451100 DOI: 10.1186/s13048-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Platinum is a key component of ovarian cancer systemic therapy. However, most patients will eventually face a recurrence, leading to chemotherapy resistance, especially against platinum. For individuals with platinum-resistant ovarian cancer (PROC), treatment options are limited, and their survival prospects are grim. The emergence of antibody-drug conjugates (ADCs) shows promises as a future treatment for PROC. This review synthesizes current research on the effectiveness of ADCs in treating PROC. It encapsulates the advancements and clinical trials of novel ADCs that target specific antigens such as Folate Receptor alpha (FRα), MUC16, NaPi2b, Mesothelin, Dipeptidase 3(DPEP3), and human epidermal growth factor receptor 2 (HER2), as well as tissue factor, highlighting their potential anti-tumor efficacy and used in combination with other therapies. The ADCs landscape in ovarian cancer therapeutics is swiftly evolving, promising more potent and efficacious treatment avenues.
Collapse
Affiliation(s)
- Xu Cheng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Ping Li
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Rongqi Jiang
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Enqing Meng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Hao Wu
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
3
|
Gujarathi R, Franses JW, Pillai A, Liao CY. Targeted therapies in hepatocellular carcinoma: past, present, and future. Front Oncol 2024; 14:1432423. [PMID: 39267840 PMCID: PMC11390354 DOI: 10.3389/fonc.2024.1432423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Targeted therapies are the mainstay of systemic therapies for patients with advanced, unresectable, or metastatic hepatocellular carcinoma. Several therapeutic targets, such as c-Met, TGF-β, and FGFR, have been evaluated in the past, though results from these clinical studies failed to show clinical benefit. However, these remain important targets for the future with novel targeted agents and strategies. The Wnt/β-catenin signaling pathway, c-Myc oncogene, GPC3, PPT1 are exciting novel targets, among others, currently undergoing evaluation. Through this review, we aim to provide an overview of previously evaluated and potentially novel therapeutic targets and explore their continued relevance in ongoing and future studies for HCC.
Collapse
Affiliation(s)
- Rushabh Gujarathi
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Joseph W Franses
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Chicago, Chicago, IL, United States
| | - Chih-Yi Liao
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Oluwalana D, Adeleye KL, Krutilina RI, Chen H, Playa H, Deng S, Parke DN, Abernathy J, Middleton L, Cullom A, Thalluri B, Ma D, Meibohm B, Miller DD, Seagroves TN, Li W. Biological activity of a stable 6-aryl-2-benzoyl-pyridine colchicine-binding site inhibitor, 60c, in metastatic, triple-negative breast cancer. Cancer Lett 2024; 597:217011. [PMID: 38849011 PMCID: PMC11290984 DOI: 10.1016/j.canlet.2024.217011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Improving survival for patients diagnosed with metastatic disease and overcoming chemoresistance remain significant clinical challenges in treating breast cancer. Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by a lack of therapeutically targetable receptors (ER/PR/HER2). TNBC therapy includes a combination of cytotoxic chemotherapies, including microtubule-targeting agents (MTAs) like paclitaxel (taxane class) or eribulin (vinca class); however, there are currently no FDA-approved MTAs that bind to the colchicine-binding site. Approximately 70 % of patients who initially respond to paclitaxel will develop taxane resistance (TxR). We previously reported that an orally bioavailable colchicine-binding site inhibitor (CBSI), VERU-111, inhibits TNBC tumor growth and treats pre-established metastatic disease. To further improve the potency and metabolic stability of VERU-111, we created next-generation derivatives of its scaffold, including 60c. RESULTS 60c shows improved in vitro potency compared to VERU-111 for taxane-sensitive and TxR TNBC models, and suppress TxR primary tumor growth without gross toxicity. 60c also suppressed the expansion of axillary lymph node metastases existing prior to treatment. Comparative analysis of excised organs for metastasis between 60c and VERU-111 suggested that 60c has unique anti-metastatic tropism. 60c completely suppressed metastases to the spleen and was more potent to reduce metastatic burden in the leg bones and kidney. In contrast, VERU-111 preferentially inhibited liver metastases and lung metastasis repression was similar. Together, these results position 60c as an additional promising CBSI for TNBC therapy, particularly for patients with TxR disease.
Collapse
Affiliation(s)
- Damilola Oluwalana
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Kelli L Adeleye
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Raisa I Krutilina
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hilaire Playa
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Shanshan Deng
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Deanna N Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - John Abernathy
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Leona Middleton
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Alexandra Cullom
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bhargavi Thalluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States
| | - Tiffany N Seagroves
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States.
| |
Collapse
|
5
|
Huang Z, Braunstein Z, Chen J, Wei Y, Rao X, Dong L, Zhong J. Precision Medicine in Rheumatic Diseases: Unlocking the Potential of Antibody-Drug Conjugates. Pharmacol Rev 2024; 76:579-598. [PMID: 38622001 DOI: 10.1124/pharmrev.123.001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/25/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
In the era of precision medicine, antibody-drug conjugates (ADCs) have emerged as a cutting-edge therapeutic strategy. These innovative compounds combine the precision of monoclonal antibodies with the potent cell-killing or immune-modulating abilities of attached drug payloads. This unique strategy not only reduces off-target toxicity but also enhances the therapeutic effectiveness of drugs. Beyond their well established role in oncology, ADCs are now showing promising potential in addressing the unmet needs in the therapeutics of rheumatic diseases. Rheumatic diseases, a diverse group of chronic autoimmune diseases with varying etiologies, clinical presentations, and prognoses, often demand prolonged pharmacological interventions, creating a pressing need for novel, efficient, and low-risk treatment options. ADCs, with their ability to precisely target the immune components, have emerged as a novel therapeutic strategy in this context. This review will provide an overview of the core components and mechanisms behind ADCs, a summary of the latest clinical trials of ADCs for the treatment of rheumatic diseases, and a discussion of the challenges and future prospects faced by the development of next-generation ADCs. SIGNIFICANCE STATEMENT: There is a lack of efficient and low-risk targeted therapeutics for rheumatic diseases. Antibody-drug conjugates, a class of cutting-edge therapeutic drugs, have emerged as a promising targeted therapeutic strategy for rheumatic disease. Although there is limited literature summarizing the progress of antibody-drug conjugates in the field of rheumatic disease, updating the advancements in this area provides novel insights into the development of novel antirheumatic drugs.
Collapse
Affiliation(s)
- Zhiwen Huang
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Zachary Braunstein
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Jun Chen
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Yingying Wei
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Xiaoquan Rao
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Lingli Dong
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Jixin Zhong
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| |
Collapse
|
6
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
Batheja S, Sahoo RK, Tarannum S, Vaiphei KK, Jha S, Alexander A, Goyal AK, Gupta U. Hepatocellular carcinoma: Preclinical and clinical applications of nanotechnology with the potential role of carbohydrate receptors. Biochim Biophys Acta Gen Subj 2023; 1867:130443. [PMID: 37573973 DOI: 10.1016/j.bbagen.2023.130443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer; accounts for 75-85% of cases. The treatment and management of HCC involve different sanative options like surgery, chemotherapy, immunotherapy, etc. Recently, various advancements have been introduced for the diagnosis and targeting of hepatic tumor cells. Among these, biomarkers are considered the primary source for the diagnosis and differentiation of tumor cells. With the advancement in the field of nanotechnology, different types of nanocarriers have been witnessed in tumor targeting. Nanocarriers such as nanoparticles, liposomes, polymeric micelles, nanofibers, etc. are readily prepared for effective tumor targeting with minimal side-effects. The emergence of various approaches tends to improve the effectiveness of these nanocarriers as demonstrated in ample clinical trials. This review focuses on the significant role of carbohydrates such as mannose, galactose, fructose, etc. in the development, diagnosis, and therapy of HCC. Hence, the current focus of this review is to acknowledge various perspectives regarding the occurrence, diagnosis, treatment, and management of HCC.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Rakesh Kumar Sahoo
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Sofiya Tarannum
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sila Katamur, Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Shikha Jha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sila Katamur, Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sila Katamur, Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
8
|
Riccardi F, Dal Bo M, Macor P, Toffoli G. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy. Front Pharmacol 2023; 14:1274088. [PMID: 37790810 PMCID: PMC10544916 DOI: 10.3389/fphar.2023.1274088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) represent an innovative class of potent anti-cancer compounds that are widely used in the treatment of hematologic malignancies and solid tumors. Unlike conventional chemotherapeutic drug-based therapies, that are mainly associated with modest specificity and therapeutic benefit, the three key components that form an ADC (a monoclonal antibody bound to a cytotoxic drug via a chemical linker moiety) achieve remarkable improvement in terms of targeted killing of cancer cells and, while sparing healthy tissues, a reduction in systemic side effects caused by off-tumor toxicity. Based on their beneficial mechanism of action, 15 ADCs have been approved to date by the market approval by the Food and Drug Administration (FDA), the European Medicines Agency (EMA) and/or other international governmental agencies for use in clinical oncology, and hundreds are undergoing evaluation in the preclinical and clinical phases. Here, our aim is to provide a comprehensive overview of the key features revolving around ADC therapeutic strategy including their structural and targeting properties, mechanism of action, the role of the tumor microenvironment and review the approved ADCs in clinical oncology, providing discussion regarding their toxicity profile, clinical manifestations and use in novel combination therapies. Finally, we briefly review ADCs in other pathological contexts and provide key information regarding ADC manufacturing and analytical characterization.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
9
|
Sun T, Niu X, He Q, Liu M, Qiao S, Qi RQ. Development, efficacy and side effects of antibody‑drug conjugates for cancer therapy (Review). Mol Clin Oncol 2023; 18:47. [PMID: 37206431 PMCID: PMC10189422 DOI: 10.3892/mco.2023.2643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are anticancer drugs that combine cytotoxic small-molecule drugs (payloads) with monoclonal antibodies through a chemical linker and that transfer toxic payloads to tumor cells expressing target antigens. All ADCs are based on human IgG. In 2009, the Food and Drug Administration (FDA) approved gemtuzumab ozogamicin as the initial first-generation ADC. Since then, at least 100 ADC-related projects have been initiated, and 14 ADCs are currently being tested in clinical trials. The limited success of gemtuzumab ozogamicin has led to the development of optimization strategies for the next generation of drugs. Subsequently, experts have improved the first-generation ADCs and have developed second-generation ADCs such as ado-trastuzumab emtansine. Second-generation ADCs have higher specific antigen levels, more stable linkers and longer half-lives and show great potential to transform cancer treatment models. Since the first two generations of ADCs have served as a good foundation, the development of ADCs is accelerating, and third-generation ADCs, represented by trastuzumab deruxtecan, are ready for wide application. Third-generation ADCs are characterized by strong pharmacokinetics and high pharmaceutical activity, and their drug-to-antibody ratio mainly ranges from 2 to 4. In the past decade, the research prospects of ADCs have broadened, and an increasing number of specific antigen targets and mechanisms of cytotoxic drug release have been discovered and studied. To date, seven ADCs have been approved by the FDA for lymphoma, and three have been approved to treat breast cancer. The present review explores the function and development of ADCs and their clinical use in cancer treatment.
Collapse
Affiliation(s)
- Te Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Ministry of Education and NHC, Shenyang, Liaoning 110001, P.R. China
| | - Xueli Niu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Ministry of Education and NHC, Shenyang, Liaoning 110001, P.R. China
| | - Qing He
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Ministry of Education and NHC, Shenyang, Liaoning 110001, P.R. China
| | - Min Liu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuai Qiao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Ministry of Education and NHC, Shenyang, Liaoning 110001, P.R. China
- Correspondence to: Professor Rui-Qun Qi or Mrs. Shuai Qiao, Department of Dermatology, The First Hospital of China Medical University, 155 Nanjing Bei Street, Shenyang, Liaoning 110001, P.R. China
| | - Rui-Qun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Ministry of Education and NHC, Shenyang, Liaoning 110001, P.R. China
- Correspondence to: Professor Rui-Qun Qi or Mrs. Shuai Qiao, Department of Dermatology, The First Hospital of China Medical University, 155 Nanjing Bei Street, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
10
|
Pimkova Polidarova M, Vanekova L, Brehova P, Dejmek M, Vavrina Z, Birkus G, Brazdova A. Synthetic Stimulator of Interferon Genes (STING) Agonists Induce a Cytokine-Mediated Anti-Hepatitis B Virus Response in Nonparenchymal Liver Cells. ACS Infect Dis 2023; 9:23-32. [PMID: 36472628 DOI: 10.1021/acsinfecdis.2c00424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B (CHB) remains a major public health problem worldwide, with limited treatment options, but inducing an antiviral response by innate immunity activation may provide a therapeutic alternative. We assessed the cytokine-mediated anti-hepatitis B virus (HBV) potential for stimulating the cyclic GMP-AMP synthase-stimulator of interferon genes (STING) pathway using STING agonists in primary human hepatocytes (PHH) and nonparenchymal liver cells (NPCs). The natural STING agonist, 2',3'-cyclic GMP-AMP, the synthetic analogue 3',3'-c-di(2'F,2'dAMP), and its bis(pivaloyloxymethyl) prodrug had strong indirect cytokine-mediated anti-HBV effects in PHH regardless of HBV genotype. Furthermore, STING agonists induced anti-HBV cytokine secretion in vitro, in both human and mouse NPCs, and triggered hepatic T cell activation. Cytokine secretion and lymphocyte activation were equally stimulated in NPCs isolated from control and HBV-persistent mice. Therefore, STING agonists modulate immune activation regardless of HBV persistence, paving the way toward a CHB therapy.
Collapse
Affiliation(s)
- Marketa Pimkova Polidarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Lenka Vanekova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic.,Faculty of Science, Charles University, Albertov 6, Prague 12800, Czech Republic
| | - Petra Brehova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Zdenek Vavrina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic.,Faculty of Science, Charles University, Albertov 6, Prague 12800, Czech Republic
| | - Gabriel Birkus
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Andrea Brazdova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| |
Collapse
|
11
|
Debnath U, Verma S, Patra J, Mandal SK. A review on recent synthetic routes and computational approaches for antibody drug conjugation developments used in anti-cancer therapy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Sharma M, Bakshi AK, Mittapelly N, Gautam S, Marwaha D, Rai N, Singh N, Tiwari P, Aggarwal N, Kumar A, Mishra PR. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. J Control Release 2022; 346:43-70. [PMID: 35405165 DOI: 10.1016/j.jconrel.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
13
|
Murali M, Kumar AR, Nair B, Pavithran K, Devan AR, Pradeep GK, Nath LR. Antibody-drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance. Clin Transl Oncol 2022; 24:407-431. [PMID: 34595736 DOI: 10.1007/s12094-021-02707-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/29/2021] [Indexed: 02/05/2023]
Abstract
An antibody-drug conjugate (ADC) is an advanced chemotherapeutic option with immense promises in treating many tumor. They are designed to selectively attack and kill neoplastic cells with minimal toxicity to normal tissues. ADCs are complex engineered immunoconjugates that comprise a monoclonal antibody for site-directed delivery and cytotoxic payload for targeted destruction of malignant cells. Therefore, it enables the reduction of off-target toxicities and enhances the therapeutic index of the drug. Hepatocellular carcinoma (HCC) is a solid tumor that shows high heterogeneity of molecular phenotypes and is considered the second most common cause of cancer-related death. Studies show enormous potential for ADCs targeting GPC3 and CD24 and other tumor-associated antigens in HCC with their high, selective expression and show potential outputs in preclinical evaluations. The review mainly highlights the preclinical evaluation of different antigen-targeted ADCs such as MetFab-DOX, Anti-c-Met IgG-OXA, Anti CD 24, ANC-HN-01, G7mab-DOX, hYP7-DCand hYP7-PC, Anti-CD147 ILs-DOX and AC133-vcMMAF against hepatocellular carcinoma and its future relevance.
Collapse
Affiliation(s)
- M Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - A R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - B Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - A R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - G K Pradeep
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - L R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| |
Collapse
|
14
|
Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther 2022; 229:107917. [PMID: 34171334 PMCID: PMC8702582 DOI: 10.1016/j.pharmthera.2021.107917] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
Antibody-drug conjugates (ADCs) are cancer therapeutic agents comprised of an antibody, a linker and a small-molecule payload. ADCs use the specificity of the antibody to target the toxic payload to tumor cells. After intravenous administration, ADCs enter circulation, distribute to tumor tissues and bind to the tumor surface antigen. The antigen then undergoes endocytosis to internalize the ADC into tumor cells, where it is transported to lysosomes to release the payload. The released toxic payloads can induce apoptosis through DNA damage or microtubule inhibition and can kill surrounding cancer cells through the bystander effect. The first ADC drug was approved by the United States Food and Drug Administration (FDA) in 2000, but the following decade saw no new approved ADC drugs. From 2011 to 2018, four ADC drugs were approved, while in 2019 and 2020 five more ADCs entered the market. This demonstrates an increasing trend for the clinical development of ADCs. This review summarizes the recent clinical research, with a specific focus on how the in vivo processing of ADCs influences their design. We aim to provide comprehensive information about current ADCs to facilitate future development.
Collapse
Affiliation(s)
- Yiming Jin
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Megan A Schladetsch
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Xueting Huang
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Wiemer
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
15
|
Lee SJ, Kim S, Jo DH, Cho CS, Kim SR, Kang D, Chae J, Yoo DK, Ha S, Chung J, Kim JH. Specific ablation of PDGFRβ-overexpressing pericytes with antibody-drug conjugate potently inhibits pathologic ocular neovascularization in mouse models. COMMUNICATIONS MEDICINE 2021; 1:58. [PMID: 35602228 PMCID: PMC9053257 DOI: 10.1038/s43856-021-00059-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Crosstalk between pericytes and endothelial cells is critical for ocular neovascularization. Endothelial cells secrete platelet-derived growth factor (PDGF)-BB and recruit PDGF receptor β (PDGFRβ)-overexpressing pericytes, which in turn cover and stabilize neovessels, independent of vascular endothelial growth factor (VEGF). Therapeutic agents inhibiting PDGF-BB/PDGFRβ signaling were tested in clinical trials but failed to provide additional benefits over anti-VEGF agents. We tested whether an antibody-drug conjugate (ADC) - an engineered monoclonal antibody linked to a cytotoxic agent - could selectively ablate pericytes and suppress retinal and choroidal neovascularization. METHODS Immunoblotting, flow cytometry, cell viability test, and confocal microscopy were conducted to assess the internalization and cytotoxic effect of ADC targeting mPDGFRβ in an in vitro setting. Immunofluorescence staining of whole-mount retinas and retinal pigment epithelium-choroid-scleral complexes, electroretinography, and OptoMotry test were used to evaluate the effect and safety of ADC targeting mPDGFRβ in the mouse models of pathologic ocular neovascularization. RESULTS ADC targeting mPDGFRβ is effectively internalized into mouse brain vascular pericytes and showed significant cytotoxicity compared with the control ADC. We also show that specific ablation of PDGFRβ-overexpressing pericytes using an ADC potently inhibits pathologic ocular neovascularization in mouse models of oxygen-induced retinopathy and laser-induced choroidal neovascularization, while not provoking generalized retinal toxicity. CONCLUSION Our results suggest that removing PDGFRβ-expressing pericytes by an ADC targeting PDGFRβ could be a potential therapeutic strategy for pathologic ocular neovascularization.
Collapse
Affiliation(s)
- Seok Jae Lee
- grid.412484.f0000 0001 0302 820XFight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soohyun Kim
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.168010.e0000000419368956Present Address: Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305 USA ,grid.168010.e0000000419368956Present Address: Stanford ChEM-H, Stanford University, Stanford, CA 94305 USA
| | - Dong Hyun Jo
- grid.31501.360000 0004 0470 5905Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Sik Cho
- grid.412484.f0000 0001 0302 820XFight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Su Ree Kim
- grid.255649.90000 0001 2171 7754Department of Life Science, Fluorescence Core Imaging Center, Ewha Womans University, Seoul, Republic of Korea
| | - Dongmin Kang
- grid.255649.90000 0001 2171 7754Department of Life Science, Fluorescence Core Imaging Center, Ewha Womans University, Seoul, Republic of Korea
| | - Jisu Chae
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Duck Kyun Yoo
- grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Suji Ha
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junho Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea.
| |
Collapse
|
16
|
Marks S, Naidoo J. Antibody drug conjugates in non-small cell lung cancer: An emerging therapeutic approach. Lung Cancer 2021; 163:59-68. [PMID: 34923203 DOI: 10.1016/j.lungcan.2021.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
The current standard-of-care for the treatment of advanced non-small cell lung cancer (NSCLC) incorporates targeted therapies, immune-checkpoint inhibitors (ICI) and systemic chemotherapy. Antibody-drug conjugates (ADC) are a class of anti-cancer therapy capable of transporting cytotoxic drugs directly to tumour cells, thus harnessing the strengths of both cytotoxic chemotherapy and targeted therapy. In this review we provide a comprehensive review the design, mode of action, and mechanisms of resistance to ADCs in NSCLC. We also summarize the clinical development of several promising ADCs in early phase clinical trials for the treatment NSCLC. including ADCs against well-established targets (e.g.HER2 in breast cancer, Nectin4 in urothelial cancer), novel antigenic targets (e.g. HER3, TROP2, PTK7, CEACAM5), as well as promising combinations with agents known to be active in NSCLC such as tyrosine kinase inhibitors and ICI therapy, as a strategy to overcome mechanisms of resistance to ADC therapy.
Collapse
Affiliation(s)
- S Marks
- Beaumont RCSI Cancer Centre, Dublin 9, Republic of Ireland.
| | - J Naidoo
- Beaumont RCSI Cancer Centre, Dublin 9, Republic of Ireland; Upper Aerodigestive Division, Sidney Kimmel Comprehensive Cancer Centre at Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Theocharopoulos C, Lialios PP, Samarkos M, Gogas H, Ziogas DC. Antibody-Drug Conjugates: Functional Principles and Applications in Oncology and Beyond. Vaccines (Basel) 2021; 9:1111. [PMID: 34696218 PMCID: PMC8538104 DOI: 10.3390/vaccines9101111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
In the era of precision medicine, antibody-based therapeutics are rapidly enriched with emerging advances and new proof-of-concept formats. In this context, antibody-drug conjugates (ADCs) have evolved to merge the high selectivity and specificity of monoclonal antibodies (mAbs) with the cytotoxic potency of attached payloads. So far, ten ADCs have been approved by FDA for oncological indications and many others are currently being tested in clinical and preclinical level. This paper summarizes the essential components of ADCs, from their functional principles and structure up to their limitations and resistance mechanisms, focusing on all latest bioengineering breakthroughs such as bispecific mAbs, dual-drug platforms as well as novel linkers and conjugation chemistries. In continuation of our recent review on anticancer implication of ADC's technology, further insights regarding their potential usage outside of the oncological spectrum are also presented. Better understanding of immunoconjugates could maximize their efficacy and optimize their safety, extending their use in everyday clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Dimitrios C. Ziogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 115 27 Athens, Greece; (C.T.); (P.-P.L.); (M.S.); (H.G.)
| |
Collapse
|