1
|
Małajowicz J, Fabiszewska A, Zieniuk B, Bryś J, Kozłowska M, Marciniak-Lukasiak K. Valorization of Oil Cakes in Two-Pot Lactone Biosynthesis Process. Foods 2025; 14:187. [PMID: 39856854 PMCID: PMC11764905 DOI: 10.3390/foods14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Oil cakes are biomass wastes created by pressing oil from oilseeds. Their chemical composition (including high fat or protein content, a favorable fatty acid profile, and a high proportion of unsaturated acids) makes them valuable raw materials not only in animal feeding but are increasingly gaining popularity in biotechnological processes. This article examines the possibility of valorizing oil cakes using the lipid fraction extracted from them or their raw form in a two-pot biosynthesis process of GDDL-a cyclic ester with a creamy-peach aroma. This study tested five types of oil cakes (hemp seeds, rapeseed, safflower, camelina, and flax), analyzing their physicochemical composition and the fatty acid profile of their lipid fraction. Due to the high content of oleic acid (over 62% lipid fraction) and the wide availability, rapeseed cake was used in the biotransformation process. The synthesis of GDDL involved a three-step process: hydrolysis of triacylglycerols, hydration of oleic acid (via lactic acid bacteria in anaerobic conditions), and β-oxidation (via Yarrowia yeast, aerobic process). The analysis showed that it is possible to produce because of the two-pot biotransformation of approximately 1.7 g of GDDL/dm3. These results highlight the process's potential and justify the feasibility of waste valorization. The proposed biotransformation requires optimization and is a good example of the application of the circular economy in food processing and waste management.
Collapse
Affiliation(s)
- Jolanta Małajowicz
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.); (J.B.); (M.K.)
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.); (J.B.); (M.K.)
| | - Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.); (J.B.); (M.K.)
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.); (J.B.); (M.K.)
| | - Mariola Kozłowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.); (J.B.); (M.K.)
| | - Katarzyna Marciniak-Lukasiak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland;
| |
Collapse
|
2
|
Oh DK, Lee TE, Lee J, Shin KC, Park JB. Biocatalytic oxyfunctionalization of unsaturated fatty acids to oxygenated chemicals via hydroxy fatty acids. Biotechnol Adv 2024; 79:108510. [PMID: 39732442 DOI: 10.1016/j.biotechadv.2024.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts. For increased oxyfunctionalization of unsaturated fatty acids, enzyme engineering, functional and balanced expression in recombinant cells, selection of suitable catalyst types, and reaction engineering have been suggested. This review describes biocatalysts involved in the oxyfunctionalization of unsaturated fatty acids and the production of hydroxy fatty acids and oxygenated chemicals.
Collapse
Affiliation(s)
- Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Hankuk University of Foreign, Mohyein-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-do 17035, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea
| |
Collapse
|
3
|
Xiao K, Zhang Y, Pan L, Tu K. Study on color and flavor changes of 4D printed white mushroom gel with microcapsules containing gelatin / β-cyclodextrin induced by microwave heating. Int J Biol Macromol 2024; 279:135365. [PMID: 39244113 DOI: 10.1016/j.ijbiomac.2024.135365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The feasibility of microwave heating to induce color/flavor changes of 4D printed white mushroom gel containing curcumin or γ-dodecalactone (γ-DDL) microcapsules was studied. Using gelatin/ β-cyclodextrin as wall material and soy protein isolate as emulsifier, microcapsules containing curcumin or γ-DDL were prepared by spray drying method. The microcapsules containing curcumin were mixed into white mushroom powder at different mass ratios (0, 0.1, 1, 3, 5 %, w/w) as printing ink. With the increase of microcapsule content, the viscosity, storage modulus and loss modulus of printing ink increased, but the water distribution and recovery performance did not change significantly. With the extension of heating time, the brightness value (L*) and the redness value (a*) of the printed sample increased, and the yellowness value (b*) decreased. After adding 3 % (w/w) microcapsules containing γ-DDL, the content change of the target flavor substance in the printed sample during microwave treatment was determined based on Gaschromatography-mass spectrometry (GC-MS). The results showed that microwave treatment could promote the release of flavor substances, and the content was 272.37 μg/kg when heated for 3 min. This study provides a new idea for the development of 4D printed food with special color and target flavor based on microcapsule technology.
Collapse
Affiliation(s)
- Kunpeng Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yujie Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
4
|
Sforzín A, Lucia A, Alzogaray RA. Two Lactones Non-toxic to Humans Are Effective Repellents for the German Cockroach. NEOTROPICAL ENTOMOLOGY 2024; 53:694-700. [PMID: 38478302 DOI: 10.1007/s13744-024-01139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/09/2024] [Indexed: 05/07/2024]
Abstract
Lactones are cyclic esters of hydroxy carboxylic acids, present in several fruits and animals consumed by humans. There is evidence that some lactones modify insect behavior. The aim of the present study was to evaluate the repellent effect of four lactones (γ- and δ-nonalactone, and γ- and δ-dodecalactone) in first instar nymphs of the German cockroach, Blattella germanica (Linnaeus). To assess repellency, a nymph was placed on a circle of filter paper, half of which had been treated with lactone dissolved in acetone and the other half with acetone alone. The behavior of the nymph was recorded and the time the nymph spent in each half of the paper was quantified using Ethovision XT 10.1 software. Values of Distribution Coefficient (DC) were calculated: DC = (Tt - TA) / Tt, where Tt is the experimental time and TA is the time the nymph spent in the area treated with the repellent agent. DC can vary between 0 and 1. Values significantly higher than 0.5 indicate repellency. N,N-diethyl-meta-toluamide (DEET) was used as a positive control. DEET, δ- and γ-nonalactone caused repellency as from 77.9 µg/cm2, whereas γ- and δ-dodecalactone had a repellent effect starting at 779.0 µg/cm2. The values of DC for these concentrations were 0.89 (DEET), 0.86 (γ-nonalactone), 0.87 (δ-nonalactone), 0.83 (γ-dodecalactone), and 0.72 (δ-dodecalactone). To our knowledge, this is the first report of repellency produced by lactones in the German cockroach. This work allowed to identify two lactones that have a repellent effect similar to DEET.
Collapse
Affiliation(s)
- Analía Sforzín
- Centro de Investigaciones de Plagas e Insecticidas (UNIDEF-CITEDEF-CONICET-CIPEIN), Villa Martelli, Buenos Aires, Argentina. analia-s-@hotmail.com
| | - Alejandro Lucia
- Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - Raúl A Alzogaray
- Centro de Investigaciones de Plagas e Insecticidas (UNIDEF-CITEDEF-CONICET-CIPEIN), Villa Martelli, Buenos Aires, Argentina
- Escuela de Hábitat y Sostenibilidad (EHyS), Univ Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
5
|
Dong G, Zhao Y, Ding W, Xu S, Zhang Q, Zhao H, Shi S. Metabolic engineering of Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids. Metab Eng 2024; 82:100-109. [PMID: 38325640 DOI: 10.1016/j.ymben.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Odd-numbered fatty acids (FAs) have been widely used in nutrition, agriculture, and chemical industries. Recently, some studies showed that they could be produced from bacteria or yeast, but the products are almost exclusively odd-numbered long-chain FAs. Here we report the design and construction of two biosynthetic pathways in Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids (OMFAs) via ricinoleic acid and 10-hydroxystearic acid, respectively. The production of OMFAs was enabled by introducing a hydroxy fatty acid cleavage pathway, including an alcohol dehydrogenase from Micrococcus luteus, a Baeyer-Villiger monooxygenase from Pseudomonas putida, and a lipase from Pseudomonas fluorescens. These OMFA biosynthetic pathways were optimized by eliminating the rate-limiting step, generating heptanoic acid, 11-hydroxyundec-9-enoic acid, nonanoic acid, and 9-hydroxynonanoic acid at 7.83 mg/L, 9.68 mg/L, 9.43 mg/L and 13.48 mg/L, respectively. This work demonstrates the biological production of OMFAs in a sustainable manner in S. cerevisiae.
Collapse
Affiliation(s)
- Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Natural Products, Henan Academy of Sciences, Zhengzhou, 450002, China
| | - Ying Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
6
|
Ebrecht AC, Mofokeng TM, Hollmann F, Smit MS, Opperman DJ. Lactones from Unspecific Peroxygenase-Catalyzed In-Chain Hydroxylation of Saturated Fatty Acids. Org Lett 2023; 25:4990-4995. [PMID: 37389482 PMCID: PMC10353034 DOI: 10.1021/acs.orglett.3c01601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 07/01/2023]
Abstract
γ- and δ-lactones are valuable flavor and fragrance compounds. Their synthesis depends on the availability of suitable hydroxy fatty acid precursors. Three short unspecific peroxygenases were identified that selectively hydroxylate the C4 and C5 positions of C8-C12 fatty acids to yield after lactonization the corresponding γ- and δ-lactones. A preference for C4 over C5 hydroxylation gave γ-lactones as the major products. Overoxidation of the hydroxy fatty acids was addressed via the reduction of the resulting oxo acids using an alcohol dehydrogenase in a bienzymatic cascade reaction.
Collapse
Affiliation(s)
- Ana C. Ebrecht
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Thato M. Mofokeng
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Martha S. Smit
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Diederik J. Opperman
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
7
|
Ma C, Zhang C, Wang X, Zhu F, Wang X, Zhang M, Duan Y. Alternative Splicing Analysis Revealed the Role of Alpha-Linolenic Acid and Carotenoids in Fruit Development of Osmanthus fragrans. Int J Mol Sci 2023; 24:ijms24108666. [PMID: 37240011 DOI: 10.3390/ijms24108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alternative splicing refers to the process of producing different splicing isoforms from the same pre-mRNA through different alternative splicing events, which almost participates in all stages of plant growth and development. In order to understand its role in the fruit development of Osmanthus fragrans, transcriptome sequencing and alternative splicing analysis was carried out on three stages of O. fragrans fruit (O. fragrans "Zi Yingui"). The results showed that the proportion of skipping exon events was the highest in all three periods, followed by a retained intron, and the proportion of mutually exclusive exon events was the lowest and most of the alternative splicing events occurred in the first two periods. The results of enrichment analysis of differentially expressed genes and differentially expressed isoforms showed that alpha-Linolenic acid metabolism, flavonoid biosynthesis, carotenoid biosynthesis, photosynthesis, and photosynthetic-antenna protein pathways were significantly enriched, which may play an important role in the fruit development of O. fragrans. The results of this study lay the foundation for further study of the development and maturation of O. fragrans fruit and further ideas for controlling fruit color and improving fruit quality and appearance.
Collapse
Affiliation(s)
- Cancan Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyan Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Fuyuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Hernik D, Gatti F, Brenna E, Szczepańska E, Olejniczak T, Boratyński F. Stereoselective synthesis of whisky lactone isomers catalyzed by bacteria in the genus Rhodococcus. Front Microbiol 2023; 14:1117835. [PMID: 36744099 PMCID: PMC9893411 DOI: 10.3389/fmicb.2023.1117835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Whisky lactone is a naturally occurring fragrance compound in oak wood and is widely used as a sensory additive in food products. However, safe and efficient methods for the production of its individual enantiomers for applications in the food industry are lacking. The aim of this study was to develop an efficient and highly stereoselective process for the synthesis of individual enantiomeric forms of whisky lactones. The proposed three-step method involves (1) column chromatography separation of a diastereoisomeric mixture of whisky lactone, (2) chemical reduction of cis-and trans-whisky lactones to corresponding syn-and anti-diols, and (3) microbial oxidation of racemic diols to individual enantiomers of whisky lactone. Among various bacteria in the genera Dietzia, Gordonia, Micrococcus, Rhodococcus, and Streptomyces, R. erythropolis DSM44534 and R. erythropolis PCM2150 effectively oxidized anti-and syn-3-methyl-octane-1,4-diols (1a-b) to corresponding enantiomerically pure cis-and trans-whisky lactones, indicating high alcohol dehydrogenase activity. Bio-oxidation catalyzed by whole cells of these strains yielded enantiomerically pure isomers of trans-(+)-(4S,5R) (2a), trans-(-)-(4R,5S) (2b), and cis-(+)-(4R,5R) (2d) whisky lactones. The optical density of bacterial cultures and the impact of the use of acetone powders as catalysts on the course of the reaction were also evaluated. Finally, the application of R. erythropolis DSM44534 in the form of an acetone powder generated the enantiomerically enriched cis-(-)-(4S,5S)-isomer (2c) from the corresponding syn-diol (1b). The newly developed method provides an improved approach for the synthesis of chiral whisky lactones.
Collapse
Affiliation(s)
- Dawid Hernik
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland,*Correspondence: Dawid Hernik, ✉
| | - Francesco Gatti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Ewa Szczepańska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland,Filip Boratyński, ✉
| |
Collapse
|
9
|
Zia H, Von Ah U, Meng Y, Schmidt R, Kerler J, Fuchsmann P. Biotechnological formation of dairy flavor inducing δ-lactones from vegetable oil. Food Chem X 2022; 13:100220. [PMID: 35498959 PMCID: PMC9039933 DOI: 10.1016/j.fochx.2022.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/05/2021] [Accepted: 01/14/2022] [Indexed: 10/25/2022] Open
Abstract
Agroscope Culture Collection was screened to identify bacterial strains effective in production of dairy flavor inducing lactones using grapeseed oil as a substrate. Lentilactobacillus parafarraginis FAM-1079, Lactococcus lactis subsp. lactis FAM-17918, and L. lactis subsp. lactis biovar diacetylactis FAM-22003 showed the most efficient formation of targeted δ-lactones. The application of sublethal heat stress significantly increased target lactone production. The most profound improvement was for L. lactis subsp. lactis biovar diacetylactis where δ-octadecalactone generation was improved by factor of 9. The pre-fermentation step as well as growth phase in which bacteria are harvested did not have a significant impact on lactones yield. The lactone production process from vegetable oil developed in this study offers a new way of developing a natural flavor ingredient for incorporation into plant-based products.
Collapse
Key Words
- ACC, Agroscope Culture Collection
- Aroma-active lactones
- ESP, Early stationary phase
- Fermentation
- Flavor generation
- GC-O, Gas-chromatography–olfactometry
- HFA, Hydroxy Fatty acid
- HS, Head space
- Heat stress
- LAB, Lactic acid bacteria
- LOQ, Limit of quantitation
- Lactic acid bacteria
- MEP, Mid-exponential phase
- OD, Optical density
- QF, Qualifier ion
- QT, Quantifier ion
- RI, Retention index
- SPE, Solid phase extraction
- UFA, Unsaturated fatty acid
- Vegetable oil
- δ-C10, δ-decalactone
- δ-C12, δ-dodecalactone
- δ-C14, δ-tetradecalactone
- δ-C18, δ-octadecalactone
Collapse
Affiliation(s)
- H. Zia
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - U. Von Ah
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Y.H. Meng
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - R. Schmidt
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - J. Kerler
- Nestlé Technology Centre Dairy, Nestlé Strasse 3, 3510 Konolfingen, Switzerland
| | - P. Fuchsmann
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| |
Collapse
|
10
|
Colombo D, Brenna E, Casali B, Ghezzi MC, Parmeggiani F, Tentori F, Tessaro D, Boratyński F. Oxidation of
threo
‐9,10‐Dihydroxystearic Acid Mediated by
Micrococcus luteus
as a Key Step in the Conversion of Oleic Acid into Pelargonic and Azelaic Acids. ChemCatChem 2021. [DOI: 10.1002/cctc.202100514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Danilo Colombo
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Beatrice Casali
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Maria Chiara Ghezzi
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Fabio Parmeggiani
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Francesca Tentori
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Davide Tessaro
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Filip Boratyński
- Department of Chemistry Wroclaw University of Environmental and Life Sciences Norwida 25 50-375 Wrocław Poland
| |
Collapse
|
11
|
A Novel and Efficient Method for the Synthesis of Methyl (R)-10-Hydroxystearate and FAMEs from Sewage Scum. Catalysts 2021. [DOI: 10.3390/catal11060663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this work, the transesterification of methyl estolides (ME) extracted from the lipid component present in the sewage scum was investigated. Methyl 10-(R)-hydroxystearate (Me-10-HSA) and Fatty Acid Methyl Esters (FAMEs) were obtained in a single step. A three-level and four factorial Box–Behnken experimental design were used to study the effects of methanol amounts, catalyst, temperature, and reaction time on the transesterification reaction using aluminum chloride hexahydrate (AlCl3·6H2O) or hydrochloric acid (HCl) as catalysts. AlCl3·6H2O was found quite active as well as conventional homogeneous acid catalysts as HCl. In both cases, a complete conversion of ME into Me-10-HSA and FAMEs was observed. The products were isolated, quantified, and fully characterized. At the end of the process, Me-10-HSA (32.3%wt) was purified through a chromatographic separation and analyzed by NMR. The high enantiomeric excess (ee > 92%) of the R-enantiomer isomer opens a new scenario for the valorization of sewage scum.
Collapse
|
12
|
Bacterial Whole Cells Synthesis of Whisky Lactones in a Solid-State Fermentation Bioreactor Prototype. Catalysts 2021. [DOI: 10.3390/catal11030320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Agro-industrial side streams such as oilseed cakes were used as a medium in solid-state fermentation (SSF) for microbial oxidation of anti- and syn-3-methyl-octane-1,4-diols to obtain corresponding trans- and cis-whisky lactones. In preliminary screening transformations, a wide range of whole bacterial cells were tested on the basis of oxidation activity, which is rarely described in the literature, in contrast to the widely studied lipolytic activity on SSF. Among the different oil cakes tested, biotransformations carried out on linseed cake were characterized by the highest conversion and stereoselectivity. Several preparative-scale oxidations performed in a self-constructed SSF bioreactor catalyzed by Rhodococcus erythropolis DSM44534, Rhodococcus erythropolis PCM2150 and Gordonia rubripertincta PCM2144 afforded optically active trans-(+)-(4S,5R), cis-(+)-(4R,5R) and cis-(-)-(4S,5S) isomers of whisky lactones, respectively. Bacteria of the Rhodococcus, Gordonia, Dietzia and Streptomyces genera carried out transformations with complete conversion after three days. Various extraction methods were applied for the isolation of the products, and among them, the combination of steam distillation with simple extraction were the most efficient. Biotransformations were conducted under precise control of conditions in a bioreactor based on a Raspberry Pi Zero W. The proposed low-cost (ca. USD 100) bioreactor is a standalone system that is fully autoclavable and easy to use.
Collapse
|
13
|
Recombinant Oleate Hydratase from Lactobacillus rhamnosus ATCC 53103: Enzyme Expression and Design of a Reliable Experimental Procedure for the Stereoselective Hydration of Oleic Acid. Catalysts 2020. [DOI: 10.3390/catal10101122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Different microbial strains are able to transform oleic acid (OA) into 10-hydroxystearic acid (10-HSA) by means of the catalytic activity of the enzymes oleate hydratase (EC 4.2.1.53). Lactobacillus rhamnosus ATCC 53103 performs this biotransformation with very high stereoselectivity, affording enantiopure (R)-10-HSA. In this work, we cloned, in Escherichia coli, the oleate hydratase present in the above-mentioned probiotic strain. Our study demonstrated that the obtained recombinant hydratase retains the catalytic properties of the Lactobacillus strain but that its activity was greatly affected by the expression procedure. According to our findings, we devised a reliable procedure for the hydration of oleic acid using a recombinant E. coli whole-cell catalyst. We established that the optimal reaction conditions were pH 6.6 at 28 °C in phosphate buffer, using glycerol and ethanol as co-solvents. According to our experimental protocol, the biocatalyst does not show significant substrate inhibition as the hydration reaction can be performed at high oleic acid concentration (up to 50 g/L).
Collapse
|