1
|
Bispo DSC, Correia M, Carneiro TJ, Martins AS, Reis AAN, de Carvalho ALMB, Marques MPM, Gil AM. Impact of Conventional and Potential New Metal-Based Drugs on Lipid Metabolism in Osteosarcoma MG-63 Cells. Int J Mol Sci 2023; 24:17556. [PMID: 38139388 PMCID: PMC10743680 DOI: 10.3390/ijms242417556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This work investigated the mechanisms of action of conventional drugs, cisplatin and oxaliplatin, and the potentially less deleterious drug Pd2Spermine (Spm) and its Pt(II) analog, against osteosarcoma MG-63 cells, using nuclear-magnetic-resonance metabolomics of the cellular lipidome. The Pt(II) chelates induced different responses, namely regarding polyunsaturated-fatty-acids (increased upon cisplatin), suggesting that cisplatin-treated cells have higher membrane fluidity/permeability, thus facilitating cell entry and justifying higher cytotoxicity. Both conventional drugs significantly increased triglyceride levels, while Pt2Spm maintained control levels; this may reflect enhanced apoptotic behavior for conventional drugs, but not for Pt2Spm. Compared to Pt2Spm, the more cytotoxic Pd2Spm (IC50 comparable to cisplatin) induced a distinct phospholipids profile, possibly reflecting enhanced de novo biosynthesis to modulate membrane fluidity and drug-accessibility to cells, similarly to cisplatin. However, Pd2Spm differed from cisplatin in that cells had equivalent (low) levels of triglycerides as Pt2Spm, suggesting the absence/low extent of apoptosis. Our results suggest that Pd2Spm acts on MG-63 cells mainly through adaptation of cell membrane fluidity, whereas cisplatin seems to couple a similar effect with typical signs of apoptosis. These results were discussed in articulation with reported polar metabolome adaptations, building on the insight of these drugs' mechanisms, and particularly of Pd2Spm as a possible cisplatin substitute.
Collapse
Affiliation(s)
- Daniela S. C. Bispo
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| | - Marlene Correia
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| | - Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - Ana S. Martins
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - Aliana A. N. Reis
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| | - Ana L. M. Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - Maria P. M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| |
Collapse
|
2
|
Gallo M, Ferrari E, Terrazzan A, Brugnoli F, Spisni A, Taccioli C, Aguiari G, Trentini A, Volinia S, Keillor JW, Bergamini CM, Bianchi N, Pertinhez TA. Metabolic characterisation of transglutaminase 2 inhibitor effects in breast cancer cell lines. FEBS J 2023; 290:5411-5433. [PMID: 37597264 DOI: 10.1111/febs.16931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transglutaminase 2 (TG2), which mediates post-translational modifications of multiple intracellular enzymes, is involved in the pathogenesis and progression of cancer. We used 1 H-NMR metabolomics to study the effects of AA9, a novel TG2 inhibitor, on two breast cancer cell lines with distinct phenotypes, MCF-7 and MDA-MB-231. AA9 can promote apoptosis in both cell lines, but it is particularly effective in MD-MB-231, inhibiting transamidation reactions and decreasing cell migration and invasiveness. This metabolomics study provides evidence of a major effect of AA9 on MDA-MB-231 cells, impacting glutamate and aspartate metabolism, rather than on MCF-7 cells, characterised by choline and O-phosphocholine decrease. Interestingly, AA9 treatment induces myo-inositol alteration in both cell lines, indicating action on phosphatidylinositol metabolism, likely modulated by the G protein activity of TG2 on phospholipase C. Considering the metabolic deregulations that characterise various breast cancer subtypes, the existence of a metabolic pathway affected by AA9 further points to TG2 as a promising hot spot. The metabolomics approach provides a powerful tool to monitor the effectiveness of inhibitors and better understand the role of TG2 in cancer.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Italy
| | | | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Italy
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | - Alessandro Trentini
- Department of Environmental Sciences and Prevention, University of Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Italy
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Carlo M Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | | | | |
Collapse
|
3
|
Stabile M, Girelli CR, Lacitignola L, Samarelli R, Crovace A, Fanizzi FP, Staffieri F. 1H-NMR metabolomic profile of healthy and osteoarthritic canine synovial fluid before and after UC-II supplementation. Sci Rep 2022; 12:19716. [PMID: 36385297 PMCID: PMC9669020 DOI: 10.1038/s41598-022-23977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to compare the metabolomic synovial fluid (SF) profile of dogs affected by spontaneous osteoarthritis (OA) and supplemented with undenatured type II collagen (UC-II), with that of healthy control dogs. Client-owned dogs were enrolled in the study and randomized in two different groups, based on the presence/absence of OA (OA group and OA-free group). All dogs were clinically evaluated and underwent SF sampling for 1H-Nuclear Magnetic Resonance spectroscopy (1H-NMR) analysis at time of presentation. All dogs included in OA group were supplemented with UC-II orally administered for 30 days. After this period, they were reassessed (OA-T30). The differences in the 1H-NMR metabolic SFs profiles between groups (OA-free, OA-T0 and OA-T30) were studied. The multivariate statistical analysis performed on SFs under different conditions (OA-T0 vs OA-T30 SFs; OA-T0 vs OA-free SFs and OA-T30 vs OA-free SFs) gave models with excellent goodness of fit and predictive parameters, revealed by a marked separation between groups. β-Hydroxybutyrate was identified as a characteristic compound of osteoarthritic joints, showing the important role of fat metabolism during OA. The absence of β-hydroxybutyrate after UC-II supplementation suggests the supplement's effectiveness in rebalancing the metabolism inside the joint. The unexpectedly high level of lactate in the OA-free group suggests that lactate could not be considered a good marker for OA. These results prove that 1H-NMR-based metabolomic analysis is a valid tool to study and monitor OA and that UC-II improves clinical symptoms and the SF metabolic profile in OA dogs.
Collapse
Affiliation(s)
- Marzia Stabile
- grid.7644.10000 0001 0120 3326Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation, University of Bari, 70123 Bari, Italy
| | - Chiara Roberta Girelli
- grid.9906.60000 0001 2289 7785Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luca Lacitignola
- grid.7644.10000 0001 0120 3326Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation, University of Bari, 70123 Bari, Italy
| | - Rossella Samarelli
- grid.7644.10000 0001 0120 3326Section of Avian Pathology, Department of Veterinary Medicine, University of Bari, 70123 Bari, Italy
| | - Antonio Crovace
- grid.7644.10000 0001 0120 3326Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation, University of Bari, 70123 Bari, Italy
| | - Francesco Paolo Fanizzi
- grid.9906.60000 0001 2289 7785Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Francesco Staffieri
- grid.7644.10000 0001 0120 3326Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation, University of Bari, 70123 Bari, Italy
| |
Collapse
|
4
|
A NMR-Based Metabolomic Approach to Investigate the Antitumor Effects of the Novel [Pt( η 1-C 2H 4OMe)(DMSO)(phen)] + (phen = 1,10-Phenanthroline) Compound on Neuroblastoma Cancer Cells. Bioinorg Chem Appl 2022; 2022:8932137. [PMID: 35721691 PMCID: PMC9205715 DOI: 10.1155/2022/8932137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
NMR-based metabolomics is a very effective tool to assess the tumor response to drugs by providing insights for their mode of action. Recently, a novel Pt(II) complex, [Pt(ƞ1-C2H4OMe)(DMSO)(phen)]+ (phen = 1,10-phenanthroline), Pt-EtOMeSOphen, was synthesized and studied for its antitumor activity against eight human cancer cell lines. Pt-EtOMeSOphen showed higher cytotoxic effects than cisplatin in most of the cancer cell lines and in particular against the neuroblastoma cell line (SH-SY5Y). In this study, the mechanism of action of Pt-EtOMeSOphen on SH-SY5Y cells was investigated using 1H NMR-based metabolomics and compared with cisplatin. The observed time response of SH-SY5Y cells under treatment revealed a faster action of Pt-EtOMeSOphen compared with cisplatin, with a response already observed after six hours of exposure, suggesting a cytosolic target. NMR-based metabolomics demonstrated a peculiar alteration of the glutathione metabolism pathway and the diacylglycerol expression.
Collapse
|
5
|
|
6
|
Ghini V, Magherini F, Massai L, Messori L, Turano P. Comparative NMR metabolomics of the responses of A2780 human ovarian cancer cells to clinically established Pt-based drugs. Dalton Trans 2022; 51:12512-12523. [DOI: 10.1039/d2dt02068h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt-based drugs play a very important role in current cancer treatments; yet, their cellular and mechanistic aspects are not fully understood. NMR metabolomics provides a powerful tool to investigate the...
Collapse
|
7
|
Ruan Y, Fang X, Guo T, Liu Y, Hu Y, Wang X, Hu Y, Gao L, Li Y, Pi J, Xu Y. Metabolic reprogramming in the arsenic carcinogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113098. [PMID: 34952379 DOI: 10.1016/j.ecoenv.2021.113098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Chronic exposure to arsenic has been associated with a variety of cancers with the mechanisms undefined. Arsenic exposure causes alterations in metabolites in bio-samples. Recent research progress on cancer biology suggests that metabolic reprogramming contributes to tumorigenesis. Therefore, metabolic reprogramming provides a new clue for the mechanisms of arsenic carcinogenesis. In the present manuscript, we review the latest findings in reprogramming of glucose, lipids, and amino acids in response to arsenic exposure. Most studies focused on glucose reprogramming and found that arsenic exposure enhanced glycolysis. However, in vivo studies observed "reverse Warburg effect" in some cases due to the complexity of the disease evolution and microenvironment. Arsenic exposure has been reported to disturb lipid deposition by inhibiting lipolysis, and induce serine-glycine one-carbon pathway. As a dominant mechanism for arsenic toxicity, oxidative stress is considered to link with metabolism reprogramming. Few studies analyzed the causal relationship between metabolic reprogramming and arsenic-induced cancers. Metabolic alterations may vary with exposure doses and periods. Identifying metabolic alterations common among humans and experiment models with human-relevant exposure characteristics may guide future investigations.
Collapse
Affiliation(s)
- Yihui Ruan
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Xin Fang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Tingyue Guo
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yiting Liu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yu Hu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Xuening Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yuxin Hu
- Experimental Teaching Center, School of Public Health, China Medical University, P.R. China
| | - Lanyue Gao
- Experimental Teaching Center, School of Public Health, China Medical University, P.R. China
| | - Yongfang Li
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China
| | - Jingbo Pi
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China; Program of Environmental Toxicology, School of Public Health, China Medical University, P.R. China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China.
| |
Collapse
|
8
|
Martins AS, Batista de Carvalho ALM, Marques MPM, Gil AM. Response of Osteosarcoma Cell Metabolism to Platinum and Palladium Chelates as Potential New Drugs. Molecules 2021; 26:4805. [PMID: 34443394 PMCID: PMC8401043 DOI: 10.3390/molecules26164805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
This paper reports the first metabolomics study of the impact of new chelates Pt2Spm and Pd2Spm (Spm = Spermine) on human osteosarcoma cellular metabolism, compared to the conventional platinum drugs cisplatin and oxaliplatin, in order to investigate the effects of different metal centers and ligands. Nuclear Magnetic Resonance metabolomics was used to identify meaningful metabolite variations in polar cell extracts collected during exposure to each of the four chelates. Cisplatin and oxaliplatin induced similar metabolic fingerprints of changing metabolite levels (affecting many amino acids, organic acids, nucleotides, choline compounds and other compounds), thus suggesting similar mechanisms of action. For these platinum drugs, a consistent uptake of amino acids is noted, along with an increase in nucleotides and derivatives, namely involved in glycosylation pathways. The Spm chelates elicit a markedly distinct metabolic signature, where inverse features are observed particularly for amino acids and nucleotides. Furthermore, Pd2Spm prompts a weaker response from osteosarcoma cells as compared to its platinum analogue, which is interesting as the palladium chelate exhibits higher cytotoxicity. Putative suggestions are discussed as to the affected cellular pathways and the origins of the distinct responses. This work demonstrates the value of untargeted metabolomics in measuring the response of cancer cells to either conventional or potential new drugs, seeking further understanding (or possible markers) of drug performance at the molecular level.
Collapse
Affiliation(s)
- Ana S. Martins
- CICECO—Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
| | - Ana L. M. Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
| | - Maria P. M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- CICECO—Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|