1
|
Khalifa A, Anwar MM, Alshareef WA, El-Gebaly EA, Elseginy SA, Abdelwahed SH. Design, Synthesis, and Antimicrobial Evaluation of New Thiopyrimidine-Benzenesulfonamide Compounds. Molecules 2024; 29:4778. [PMID: 39407706 PMCID: PMC11477697 DOI: 10.3390/molecules29194778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Bacterial infection poses a serious threat to human life due to the rapidly growing resistance of bacteria to antibacterial drugs, which is a significant public health issue. This study was focused on the design and synthesis of a new series of 25 analogues bearing a 5-cyano-6-oxo-4-substituted phenyl-1,6-dihydropyrimidine scaffold hybridized with different substituted benzenesulfonamides through the thioacetamide linker M1-25. The antimicrobial activity of the new molecules was studied against various Gram-positive, Gram-negative, and fungal strains. All the tested compounds showed promising broad-spectrum antimicrobial efficacy, especially against K. pneumoniae and P. aeruginosa. Furthermore, the most promising compounds, 6M, 19M, 20M, and 25M, were subjected to minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. In addition, the antivirulence activity of the compounds was also examined using multiple biofilm assays. The new compounds promisingly revealed the suppression of microbial biofilm formation in the examined K. pneumoniae and P. aeruginosa microbial isolates. Additionally, in silico ADMET studies were conducted to determine their oral bioavailability, drug-likeness characteristics, and human toxicity risks. It is suggested that new pyrimidine-benzenesulfonamide derivatives may serve as model compounds for the further optimization and development of new antimicrobial and antisepsis candidates.
Collapse
Affiliation(s)
- Abdalrahman Khalifa
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo P.O. Box 12622, Egypt;
| | - Walaa A. Alshareef
- Microbiology and Immunology Department, Faculty of Pharmacy, O6U, Giza P.O. Box 12585, Egypt; (W.A.A.); (E.A.E.-G.)
| | - Eman A. El-Gebaly
- Microbiology and Immunology Department, Faculty of Pharmacy, O6U, Giza P.O. Box 12585, Egypt; (W.A.A.); (E.A.E.-G.)
| | - Samia A. Elseginy
- Green Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt;
| | - Sameh H. Abdelwahed
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
| |
Collapse
|
2
|
Saquib Q, Bakheit AH, Ahmed S, Ansari SM, Al-Salem AM, Al-Khedhairy AA. Identification of Phytochemicals from Arabian Peninsula Medicinal Plants as Strong Binders to SARS-CoV-2 Proteases (3CL Pro and PL Pro) by Molecular Docking and Dynamic Simulation Studies. Molecules 2024; 29:998. [PMID: 38474509 DOI: 10.3390/molecules29050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
We provide promising computational (in silico) data on phytochemicals (compounds 1-10) from Arabian Peninsula medicinal plants as strong binders, targeting 3-chymotrypsin-like protease (3CLPro) and papain-like proteases (PLPro) of SARS-CoV-2. Compounds 1-10 followed the Lipinski rules of five (RO5) and ADMET analysis, exhibiting drug-like characters. Non-covalent (reversible) docking of compounds 1-10 demonstrated their binding with the catalytic dyad (CYS145 and HIS41) of 3CLPro and catalytic triad (CYS111, HIS272, and ASP286) of PLPro. Moreover, the implementation of the covalent (irreversible) docking protocol revealed that only compounds 7, 8, and 9 possess covalent warheads, which allowed the formation of the covalent bond with the catalytic dyad (CYS145) in 3CLPro and the catalytic triad (CYS111) in PLPro. Root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and radius of gyration (Rg) analysis from molecular dynamic (MD) simulations revealed that complexation between ligands (compounds 7, 8, and 9) and 3CLPro and PLPro was stable, and there was less deviation of ligands. Overall, the in silico data on the inherent properties of the above phytochemicals unravel the fact that they can act as reversible inhibitors for 3CLPro and PLPro. Moreover, compounds 7, 8, and 9 also showed their novel properties to inhibit dual targets by irreversible inhibition, indicating their effectiveness for possibly developing future drugs against SARS-CoV-2. Nonetheless, to confirm the theoretical findings here, the effectiveness of the above compounds as inhibitors of 3CLPro and PLPro warrants future investigations using suitable in vitro and in vivo tests.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sabiha M Ansari
- Botany & Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Bakheit AH, Saquib Q, Ahmed S, Ansari SM, Al-Salem AM, Al-Khedhairy AA. Covalent Inhibitors from Saudi Medicinal Plants Target RNA-Dependent RNA Polymerase (RdRp) of SARS-CoV-2. Viruses 2023; 15:2175. [PMID: 38005857 PMCID: PMC10675690 DOI: 10.3390/v15112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19, a disease caused by SARS-CoV-2, has caused a huge loss of human life, and the number of deaths is still continuing. Despite the lack of repurposed drugs and vaccines, the search for potential small molecules to inhibit SARS-CoV-2 is in demand. Hence, we relied on the drug-like characters of ten phytochemicals (compounds 1-10) that were previously isolated and purified by our research team from Saudi medicinal plants. We computationally evaluated the inhibition of RNA-dependent RNA polymerase (RdRp) by compounds 1-10. Non-covalent (reversible) docking of compounds 1-10 with RdRp led to the formation of a hydrogen bond with template primer nucleotides (A and U) and key amino acid residues (ASP623, LYS545, ARG555, ASN691, SER682, and ARG553) in its active pocket. Covalent (irreversible) docking revealed that compounds 7, 8, and 9 exhibited their irreversible nature of binding with CYS813, a crucial amino acid in the palm domain of RdRP. Molecular dynamic (MD) simulation analysis by RMSD, RMSF, and Rg parameters affirmed that RdRP complexes with compounds 7, 8, and 9 were stable and showed less deviation. Our data provide novel information on compounds 7, 8, and 9 that demonstrated their non-nucleoside and irreversible interaction capabilities to inhibit RdRp and shed new scaffolds as antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (A.A.A.-K.)
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Sabiha M. Ansari
- Botany & Microbiology Department, College of Sciences, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdullah M. Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (A.A.A.-K.)
| | - Abdulaziz A. Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (A.A.A.-K.)
| |
Collapse
|
4
|
Dube ZF, Soremekun OS, Ntombela T, Alahmdi MI, Abo-Dya NE, Sidhom PA, Shawky AM, Shibl MF, Ibrahim MA, Soliman ME. Inherent efficacies of pyrazole-based derivatives for cancer therapy: the interface between experiment and in silico. Future Med Chem 2023; 15:1719-1738. [PMID: 37772542 DOI: 10.4155/fmc-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
There has been an increasing trend in the design of novel pyrazole derivatives for desired biological applications. For a cost-effective strategy, scientists have implemented various computational drug design tools to go hand in hand with experiments for the design and discovery of potentially effective pyrazole-based therapeutics. This review highlights the milestones of pyrazole-containing inhibitors and the use of molecular modeling techniques in conjunction with experimental studies to provide a view of the binding mechanism of these compounds. The review focuses on the established targets that play a key role in cancer therapy, including proteins involved in tubulin polymerization, carbonic anhydrase and tyrosine kinase. Overall, using both experimental and computational methods in drug design represents a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Zanele F Dube
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, South Kensington, London, SW7 2BX, UK
| | - Thandokuhle Ntombela
- Catalysis & Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Ahmed M Shawky
- Science & Technology Unit, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohamed F Shibl
- Renewable Energy Program, Center for Sustainable Development, College of Arts & Sciences, Qatar University, Doha, 2713, Qatar
| | - Mahmoud Aa Ibrahim
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mahmoud Es Soliman
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
5
|
Wang Z, Gao H. Anti-inflammatory or anti-SARS-CoV-2 ingredients in Huashi Baidu Decoction and their corresponding targets: Target screening and molecular docking study. ARAB J CHEM 2023; 16:104663. [PMID: 36816510 PMCID: PMC9928610 DOI: 10.1016/j.arabjc.2023.104663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly emerging infectious disease caused by SARS-CoV-2. Inflammatory factors may play essential roles in COVID-19 progression. Huashi Baidu Decoction (HSBD) is a traditional Chinese medicine (TCM) formula that can expel cold, dispel dampness, and reduce inflammation. HSBD has been widely used for the treatment of COVID-19. However, the active ingredients and potential targets for HSBD to exert anti-inflammatory or anti-SARS-CoV-2 effects remain unclear. In this paper, the active ingredients with anti-inflammatory or anti-viral effects in HSBD and their potential targets were screened using the Discovery Studio 2020 software. By overlapping the targets of HSBD and COVID-19, 8 common targets (FYN, SFTPD, P53, RBP4, IL1RN, TTR, SRPK1, and AKT1) were identified. We determined 2 key targets (P53 and AKT1) by network pharmacology. The main active ingredients in HSBD were evaluated using the key targets as receptor proteins for molecular docking. The results suggested that the best active ingredients Kaempferol2 and Kaempferol3 have the potential as supplements for the treatment of COVID-19.
Collapse
Affiliation(s)
| | - Hongwei Gao
- Corresponding author at: Prof Hongwei Gao: School of Life Science, Ludong University, Yantai, Shandong, 264025, China
| |
Collapse
|
6
|
Zhu Y, Lin X, Wen L, He D. Synthesis and Biological Evaluation of Dipeptide-Based Stilbene Derivatives Bearing a Biheterocyclic Moiety as Potential Fungicides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248755. [PMID: 36557888 PMCID: PMC9784524 DOI: 10.3390/molecules27248755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The escalating demand for crop production, environmental protection, and food safety warrants the development of new fungicides with greater efficiency, environmental friendliness, and innocuous metabolites to fight against destructive phytopathogens. Herein, we report on the synthesis and antifungal activity of dipeptide-based stilbene derivatives bearing a thiophene-substituted 1,3,4-oxadiazole fragment for the first time. In vitro bioassay indicated that the target compounds had remarkable antifungal potency superior to previously reported counterparts without a dipeptidyl group, of which compound 3c exhibited the highest activity against Botrytis cinerea with EC50 values of 106.1 μg/mL. Moreover, the in vivo protective effect of compound 3c (59.1%) against tomato gray mold was more potent than that of carboxin (42.0%). Preliminary investigations on the mode of action showed that compound 3c induced marked hyphal malformations and increased the membrane permeability of B. cinerea as well as inhibiting mycelial respiration. These promising results suggest that this novel type of molecular framework has great potential to be further developed as alternative fungicides.
Collapse
Affiliation(s)
- Yongchuang Zhu
- School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China
| | - Xingdong Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lan Wen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Daohang He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-20-8711-0234
| |
Collapse
|
7
|
Karpagakalyaani G, Magdaline JD, Chithambarathanu T. Comparative spectral (FT-IR, FT-Raman, UV) investigations, HOMO–LUMO, NBO and in-silico docking analysis of Nikethamide, niazid and 2-Mercaptonicotinic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Abstract
Background: Conserved domains within SARS coronavirus 2 nonstructural proteins represent key targets for the design of novel inhibitors. Methods: The authors aimed to identify potential SARS coronavirus 2 NSP5 inhibitors using the ZINC database along with structure-based virtual screening and molecular dynamics simulation. Results: Of 13,840 compounds, 353 with robust docking scores were initially chosen, of which ten hit compounds were selected as candidates for detailed analyses. Three compounds were selected as coronavirus NSP5 inhibitors after passing absorption, distribution, metabolism, excretion and toxicity study; root and mean square deviation; and radius of gyration calculations. Conclusion: ZINC000049899562, ZINC000169336666 and ZINC000095542577 are potential NSP5 protease inhibitors that warrant further experimental studies.
Collapse
|
9
|
Moustafa GO, Shalaby A, Naglah AM, Mounier MM, El-Sayed H, Anwar MM, Nossier ES. Synthesis, Characterization, In Vitro Anticancer Potentiality, and Antimicrobial Activities of Novel Peptide-Glycyrrhetinic-Acid-Based Derivatives. Molecules 2021; 26:4573. [PMID: 34361728 PMCID: PMC8346995 DOI: 10.3390/molecules26154573] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Glycyrrhetinic acid (GA) is one of many interesting pentacyclic triterpenoids showing significant anticancer activity by triggering apoptosis in tumor cell lines. This study deals with the design and synthesis of new glycyrrhetinic acid (GA)-amino acid peptides and peptide ester derivatives. The structures of the new derivatives were established through various spectral and microanalytical data. The novel compounds were screened for their in vitro cytotoxic activity. The evaluation results showed that the new peptides produced promising cytotoxic activity against the human breast MCF-7 cancer cell line while comparing to doxorubicin. On the other hand, only compounds 3, 5, and 7 produced potent activity against human colon HCT-116 cancer cell line. The human liver cancer (HepG-2) cell line represented a higher sensitivity to peptide 7 (IC50; 3.30 μg/mL), while it appeared insensitive to the rest of the tested peptides. Furthermore, compounds 1, 3, and 5 exhibited a promising safety profile against human normal skin fibroblasts cell line BJ-1. In order to investigate the mode of action, compound 5 was selected as a representative example to study its in vitro effect against the apoptotic parameters and Bax/BCL-2/p53/caspase-7/caspase-3/tubulin, and DNA fragmentation to investigate beta (TUBb). Additionally, all the new analogues were subjected to antimicrobial assay against a panel of Gram-positive and Gram-negative bacteria and the yeast candida Albicans. All the tested GA analogues 1-8 exhibited more antibacterial effect against Micrococcus Luteus than gentamicin, but they exhibited moderate antimicrobial activity against the tested bacterial and yeast strains. Molecular docking studies were also simulated for compound 5 to give better rationalization and put insight to the features of its structure.
Collapse
Affiliation(s)
- Gaber O. Moustafa
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
| | - Ahmed Shalaby
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
| | - Ahmed M. Naglah
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa M. Mounier
- National Research Centre, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, 33-El Bohouth St., Giza 12622, Egypt;
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11111, Egypt;
| | - Manal M. Anwar
- National Research Centre, Department of Therapeutic Chemistry, Cairo 12622, Egypt;
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt;
| |
Collapse
|
10
|
Naglah AM, Moustafa GO, Elhenawy AA, Mounier MM, El-Sayed H, Al-Omar MA, Almehizia AA, Bhat MA. N α-1, 3-Benzenedicarbonyl-Bis-(Amino Acid) and Dipeptide Candidates: Synthesis, Cytotoxic, Antimicrobial and Molecular Docking Investigation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1315-1332. [PMID: 33790542 PMCID: PMC8006965 DOI: 10.2147/dddt.s276504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
Purpose The objective of our work was to prepare a potent and safe antimicrobial and anticancer agents, through synthesis of several peptides and examine their biological activities, namely as, cytotoxically potent and antimicrobial and antifungal agents. Introduction Multidrug-resistant microbial strains have arisen against all antibiotics in clinical use. Infections caused by these bacteria threaten global public health and are associated with high mortality rates. Methods The main backbone structure for the novel synthesized linear peptide is Nα-1, 3-benzenedicarbonyl-bis-(Amino acids)-X, (3–11). A computational docking study against DNA gyrase was performed to formulate a mode of action of the small compounds as antimicrobial agents. Results The peptide-bearing methionine-ester (4) exhibited potent antimicrobial activity compared to the other synthesized compounds, while, peptide (8), which had methionine-hydrazide fragment was the most potent as antifungal agent against Aspergillus niger with 100% inhibition percent. Compounds (6 and 7) showed the highest potency against breast human tumor cell line “MCF-7” with 95.1% and 79.8% of cell inhibition, respectively. The nine compounds possessed weak to moderate antiproliferative effect over colon tumor cell line. The docking results suggest good fitting through different hydrogen bond interactions with the protein residues. In silico ADMET study also evaluated and suggested that these compounds had promising oral bioavailability features. Conclusion The tested compounds need further modification to have significant antimicrobial and antitumor efficacy compared to the reference drugs.
Collapse
Affiliation(s)
- Ahmed M Naglah
- Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Cairo, Egypt
| | - Gaber O Moustafa
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Cairo, Egypt
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University (Boys'Branch), Cairo, Egypt.,Chemistry Department, Faculty of Science, Albaha University, Al Baha, Saudi Arabia
| | - Marwa M Mounier
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Mohamed A Al-Omar
- Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|