1
|
Panou E, Zengin G, Milic N, Ganos C, Graikou K, Chinou I. A Comparative UPLC/HRMS Molecular Networking-Enhanced Study on the Phenolic Profiles and Bioactivities of Three Medicinally Significant Species of Onosma (Boraginaceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:3468. [PMID: 39771165 PMCID: PMC11676079 DOI: 10.3390/plants13243468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
The current work represents a comparative study of the phenolic profiles of three under-explored Onosma (Boraginaceae) species from Greece-Onosma leptantha (OL), Onosma erecta (OE), and Onosma graeca (OG). Although Onosma spp. have ethnopharmacological significance, previous phytochemical studies have focused primarily on roots. Methanolic extracts of the aerial parts were analyzed using qualitative LC-MS enhanced by molecular networking-based dereplication, annotating 94 phenolics categorized into hydroxybenzoic acids (7), hydroxycinnamic acids (24), lignans (14), neolignans (14), stilbenes (4), coumarins (5), and flavonoids (26). OG exhibited the broadest distribution of flavonoid glycosides. OL contained the greatest number of hydroxycinnamic and neolignan derivatives, and OE was notably abundant in lignans. Total phenolic (TPC) and total flavonoid (TFC) contents were quantified, and the antioxidant capacity and enzyme inhibition against cholinesterases, α-amylase, and α-glucosidase were assessed. OL showed a high TPC (69.03 mg GAE/g extract) and strong antioxidant activity, while OG exhibited a high TFC (45.80 mg RE/g extract). All extracts demonstrated stronger AChE inhibition than BChE, with OG showing the highest AChE inhibition (2.35 mg GALAE/g). Additionally, OL was the most active against both α-glucosidase (5.69 mmol ACAE/g) and α-amylase (0.48 mmol ACAE/g). This study improved our understanding of the chemical diversity within these species, providing a more comprehensive insight into their longstanding ethnopharmacological potential.
Collapse
Affiliation(s)
- Evgenia Panou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (E.P.); (N.M.); (C.G.); (K.G.)
| | - Gokhan Zengin
- Laboratory of Physiology and Biochemistry, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Nikola Milic
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (E.P.); (N.M.); (C.G.); (K.G.)
| | - Christos Ganos
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (E.P.); (N.M.); (C.G.); (K.G.)
| | - Konstantia Graikou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (E.P.); (N.M.); (C.G.); (K.G.)
| | - Ioanna Chinou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (E.P.); (N.M.); (C.G.); (K.G.)
| |
Collapse
|
2
|
Chrzanowska E, Denisow B, Ekiert H, Pietrzyk Ł. Metabolites Obtained from Boraginaceae Plants as Potential Cosmetic Ingredients-A Review. Molecules 2024; 29:5088. [PMID: 39519729 PMCID: PMC11547297 DOI: 10.3390/molecules29215088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
One of the challenges of the pharmaceutical and cosmetic industries is to deliver biochemical compounds that can be advantageous for the skin. Research on Boraginaceae taxa has confirmed their use in traditional medicine and proved the potential biological importance of various molecules in cosmetology. The main classes of valuable compounds associated with Boraginaceae taxa are fatty acids, including γ-linolenic acid, essential oils, phenolic acids (e.g., rosmarinic acid), flavonoids, anthocyanins, tannins, and saponins. Highly specific are naphthoquinone pigments (including shikonin) and allantoin. Another distinguishing feature is the accumulation of silica (silicon dioxide) in trichomes. Some taxa produce mucilages. However, pyrrolizidine alkaloids (PAs) with toxic properties are also found (mainly in Symphytum spp.); therefore, their applications should be avoided. Extracts or individual compounds of Boraginaceae plants are characterized by antioxidant, anti-inflammatory, antiseptic, anti-irritant, antiaging, and photoprotective activities. Boraginaceae products are widespread in the cosmetic industry as ingredients of creams, balms, lotions, gels, shampoos, lipsticks, perfumes, and deodorants. The most valuable for the cosmetic industry are raw materials obtained from the genera Alcanna Anchusa, Arnebia, Borago, Buglossoides, Cerinthe, Cordia, Echium, Ehretia, Eriodictyon, Glendora, Lappula, Lithospermum, Lycopsis, Macrotomia, Maharanga, Mertensia, Messerschmidia, Myosotis, Omphalodes, Onosma, Pulmonaria, Rindera, Symphytum, Trachystemon, and Trigonotis. Further research should focus on the search for active substances in other plants of the family.
Collapse
Affiliation(s)
- Ewelina Chrzanowska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland;
| | - Bożena Denisow
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland;
| | - Halina Ekiert
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland;
| | - Łukasz Pietrzyk
- Faculty of Medicine, Institute of Medical Sciences, The John Paul II Catholic University of Lublin, 1H Konstantynów Str., 20-708 Lublin, Poland;
| |
Collapse
|
3
|
Lin YY, Lin YK, Lin YH, Chiang CF. Novel compounds of Djulis ( Chenopodium formosanum Koidz) increases collagen, antioxidants, inhibits adipogenesis. Nat Prod Res 2024; 38:2763-2772. [PMID: 37452702 DOI: 10.1080/14786419.2023.2235064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Djulis (Chenopodium formosanum Koidz), is rich in nutrients and contains various bioactive components such as polyphenols and alkaloids. The new compound has a broad application prospect, including food additives, health products, drugs, etc. The purpose of this study was to find out new compounds from Djulis. It was found that 24 compounds including 7 phenols, 11 flavonoids, 4 plant alkaloids, 2 sterols. Among those, TCI-CF-22-S (Methyl 3,6-dihydroxy-2-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate), TCI-CF-23-S (Methyl 6-hydroxy-2-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate), TCI-CF-24-S (Kaempferol-3-O-b-D-apifuranosyl-(1→2)-a-L-arabinopyranoside) were isolated from djulis sources for the first time, and the structures of compounds were assigned by 1D, 2D NMR spectroscopy. TCI-CF-01(Caffeic acid), TCI-CF-02 (20-Hydroxyecdysone), TCI-CF-03 (Japonicone), TCI-CF-04 (3,4-Dihydroxyphenylacetiate), TCI-CF-05 (Quercetin-3-O-rutinoside-7-O-rhamnopyranoside), TCI-CF-06 (Guanosine), TCI-CF-07(Adenine), TCI-CF-08 (Coumaric acid) increased collagen production, and TCI-CF-03 (Japonicone), TCI-CF-04 (3,4-Dihydroxyphenylacetiate), TCI-CF-06 (Guanosine), TCI-CF-17 (Rutin), TCI-CF-20 (Protocatechuic acid) decreased advanced glycation end products (AGEs). In addition, TCI-CF-22-S (Methyl 6-hydroxy-2-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate), TCI-CF-23-S (Methyl 3,6-dihydroxy-2-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate) inhibited the formation of fatty oil droplets. Djulis has 24 compounds that may have various applications, including increasing collagen production and reducing advanced glycation end products and fatty oil droplets.
Collapse
Affiliation(s)
- Yuan-You Lin
- Research & Design Center, TCI CO., Ltd, Taipei, Taiwan
| | - Yung-Kai Lin
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
| | | | - Chi-Fu Chiang
- Research & Design Center, TCI CO., Ltd, Taipei, Taiwan
| |
Collapse
|
4
|
Aljowaie RM, Alsayed MF, Alkubaisi NA, Almarfadi OM, Farrag MA, Abdulmanea AA, Alfuraydi AA, Abalkhail T, Aboul-Soud MAM, Aziz IM. In vitro and in silico evaluation of bioactivities and chemical composition of the aerial parts of Anchusa officinalis L. methanol extract. Cell Biochem Funct 2024; 42:e4093. [PMID: 38978319 DOI: 10.1002/cbf.4093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The main objective of the study is to evaluate the antioxidant, anticancer, and antimicrobial activities of Anchusa officinalis L. in vitro and in silico. The dried aerial parts of A. officinalis L. were extracted with methanol. Total phenolic and flavonoid content was analyzed. Antioxidant and antimicrobial effects were tested against both gram-positive and gram-negative bacteria. Gas chromatography-mass spectrometry analysis revealed the presence of 10 phytochemical compounds, and cyclobutane (26.07%) was identified as the major photochemical compound. The methanol extract exhibited the maximum amount of total phenolic content (118.24 ± 4.42 mg QE/g dry weight of the dry extract) (R2 = 0.994) and the total flavonoid content was 94 ± 2.34 mg QE/g dry weight of the dry extract (R2 = 0.999). The IC50 value for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid was 107.12 ± 3.42 μg/mL, and it was high for 1,1-diphenyl-2-picryl hydrazyl (123.94 ± 2.31 μg/mL). The IC50 value was 72.49 ± 3.14 against HepG2 cell lines, and a decreased value was obtained (102.54 ± 4.17 g/mL) against MCF-7 cell lines. The methanol extract increased the expression of caspase mRNA and Bax mRNA levels when compared to the control experiment (p < .05). The conclusions, A. officinalis L. aerial parts extract exhibited antibacterial, antifungal, and antioxidant activities.
Collapse
Affiliation(s)
- Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mashail Fahad Alsayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adel A Abdulmanea
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tarad Abalkhail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Ruzibaeva RM, Bobakulov KM, Mukarramov NI, Tashkhodzhaev B, Okmanov RY, Nigmatullaev AM, Abdullaev ND. Rinderidine and oblongifolidine new pyrrolizidine alkaloids from Rindera oblongifolia M. Popov and their absolute configurations. Nat Prod Res 2024; 38:1157-1167. [PMID: 36255127 DOI: 10.1080/14786419.2022.2134865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 10/24/2022]
Abstract
The alkaloid composition of Rindera oblongifolia was studied, in which the pyrrolizidine alkaloids echinatine and trachelanthamine N-oxide, as well as two new quaternary salts namely rinderidine and the oblongifolidine were isolated. The structures of the isolated new alkaloids were elucidated by NMR spectroscopy. The absolute configuration of lindelofine, trachelanthamine N-oxide, rinderidine and oblongifolidine was established by single crystal X-ray diffraction as: 1 R, 4 R, 8 R, 2'S, 3'R; 1 R, 4S, 8S, 2'S, 3'R; 4 R, 7S, 8 R, 2'S, 3'S; 4 R, 7S, 8 R, 2'S, 3'S (7''S, 8''R) respectively. Both new pyrrolizidine alkaloids showed no cytotoxicity against four cancer cell lines such as HeLa, НEр-2, HBL-100 and CCRF-CEM.
Collapse
Affiliation(s)
- R M Ruzibaeva
- Department of Chemistry of Alkaloids, Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Kh M Bobakulov
- Department of Physical Methods of Research, Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - N I Mukarramov
- Department of Chemistry of Alkaloids, Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - B Tashkhodzhaev
- Department of Physical Methods of Research, Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - R Ya Okmanov
- Department of Physical Methods of Research, Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- Department of Organic Chemistry, National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan
| | - A M Nigmatullaev
- Department of Medicinal and Technical Plants, Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - N D Abdullaev
- Department of Physical Methods of Research, Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
6
|
Dallali D, Fakhfakh J, Paris C, Aoiadni N, Philippot S, Risler A, Varbanov M, Allouche N. HPLC-HESI-MS/MS Analysis of Phenolic Compounds from Cynoglossum tubiflorus Leaf Extracts: An Assessment of Their Cytotoxic, Antioxidant, and Antibacterial Properties. PLANTS (BASEL, SWITZERLAND) 2024; 13:909. [PMID: 38592935 PMCID: PMC10974341 DOI: 10.3390/plants13060909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
The current study aimed to investigate the chemical composition, antioxidant, antibacterial, and cytotoxic properties of three extracts (hexane, dichloromethane, and methanol) from Cynoglossum tubiflorus. The composition of the methanolic extract was elucidated using HPLC-HESI-MS/MS analysis. The antioxidant effect was examined using NO, DPPH, FRAP, and TAC assays. Antimicrobial activity was evaluated by broth microdilution using various bacterial strains such as S. aureus, S. epidermidis, P. aeruginosa, E. coli, and K. pneumoniae. Structural disruptions in Gram-positive bacteria were visualized using scanning electron microscopy (SEM). Cytotoxic effects were evaluated on human MRC-5 in culture according to the MTT assay. The outcomes suggest that methanol extract contained a high amount of phenolic compounds (254.35 ± 0.360 mg GAE/g DE and 211.59 ± 0.939 mg QE/g DE). By applying the HPLC-HESI-MS/MS analysis, 32 compounds were identified, including phenolic acids, flavonoids, lignans, and fatty acids. This extract showed strong antioxidant (IC50 = 0.043 ± 0.001 mg/mL) and antimicrobial (MIC = 156 µg/mL) activities. The SEM suggests that cells exhibited membrane distortions characterized by surface depressions and alterations in bacterial shape, including dents, when compared to untreated cells. The in vitro cytotoxicity effect on human MRC-5 cells showed no toxicity effects at a concentration of 600 µg/mL. In silico analysis predicted low toxicity for all tested compounds across four different administration routes. This research indicates that this plant could be explored as a powerful source of natural drugs to target pathogens, with applications in the food, pharmaceutical, and medical industries.
Collapse
Affiliation(s)
- Dhouha Dallali
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax P.O. Box 1171, Tunisia; (D.D.); (J.F.)
| | - Jawhar Fakhfakh
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax P.O. Box 1171, Tunisia; (D.D.); (J.F.)
| | - Cédric Paris
- Université de Lorraine, LIBio, F-54000 Nancy, France;
| | - Nissaf Aoiadni
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Sfax P.O. Box 1171, Tunisia;
| | - Stéphanie Philippot
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.P.); (A.R.); (M.V.)
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.P.); (A.R.); (M.V.)
| | - Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.P.); (A.R.); (M.V.)
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax P.O. Box 1171, Tunisia; (D.D.); (J.F.)
| |
Collapse
|
7
|
Demirel Ozbek Y, Saral O, Turker PF. Modern and traditional cooking methods affect the antioxidant activity and phenolic compounds content of Trachystemon Orientalis (L.) G. Don. PLoS One 2024; 19:e0299037. [PMID: 38394328 PMCID: PMC10890727 DOI: 10.1371/journal.pone.0299037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Trachystemon orientalis (L.) G. Don is a medicinal plant with beneficial effects on human health. Its antioxidant and phenolic compound content is higher than most natural plants. This is the first study on the cooking of this consumed plant. This study investigated how different cooking methods and times affect the antioxidant activity and phenolic compound content of Trachystemon orientalis (L.) G. Don. The Folin-Ciocalteu method (FCR), ferric-reducing antioxidant power (FRAP), copper-reducing antioxidant capacity (CUPRAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were used to evaluate the antioxidant activity and total phenolic content (TPC). Phenolic compounds were also determined by high-performance liquid chromatography (HPLC). Microwave cooking, stir-frying and sous vide increased TPC and antioxidant activity (p<0.05). Steaming decreased TPC and antioxidant activity (p<0.05). It was determined that the best cooking method and time was stir-frying for 15 minutes (TPC, CUPRAC and FRAP values 45.18±3.91 mg GAE/g DW, 15559.39±106.90 mmol Troloks/g DW and 555.10±24.05 μmol Fe (II)/g DW, respectively). Raw Trachystemon orientalis (L.) G. Don was detected with caffeic acid (31.53±0.25 mg/100 g DW). New phenolic compounds (protocatechuic acid and p-coumaric acid) were formed by boiling, stir-frying, microwaving, and sous vide methods. In conclusion, regarding antioxidant activity and phenolic compounds of Trachystemon orientalis (L.) G. Don; the best cooking methods are microwave, stir-frying, and sous vide (p<0.05). The most wrong cooking method is steaming (p<0.05).
Collapse
Affiliation(s)
- Yagmur Demirel Ozbek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdoğan University, Rize, Turkiye
| | - Ozlem Saral
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdoğan University, Rize, Turkiye
| | - Perim Fatma Turker
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Başkent University, Ankara, Turkiye
| |
Collapse
|
8
|
Sykłowska-Baranek K, Gaweł M, Kuźma Ł, Wileńska B, Kawka M, Jeziorek M, Graikou K, Chinou I, Szyszko E, Stępień P, Zakrzewski P, Pietrosiuk A. Rindera graeca (A. DC.) Boiss. & Heldr. (Boraginaceae) In Vitro Cultures Targeting Lithospermic Acid B and Rosmarinic Acid Production. Molecules 2023; 28:4880. [PMID: 37375435 DOI: 10.3390/molecules28124880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The in vitro cultures of Rindera graeca, a rare endemic plant, were developed as a sustainable source of phenolic acids. Various shoot and root cultures were established and scaled up in a sprinkle bioreactor. A multiplication rate of 7.2 shoots per explant was achieved. HPLC-PDA-ESI-HRMS analysis revealed the presence of rosmarinic acid (RA) and lithospermic acid B (LAB) as the main secondary metabolites in both the shoot and root cultures. The maximum RA (30.0 ± 3.2 mg/g DW) and LAB (49.3 ± 15.5 mg/g DW) yields were determined in root-regenerated shoots. The strongest free radical scavenging activity (87.4 ± 1.1%), according to 2,2-diphenyl-1-picrylhydrazyl-hydrate assay, was noted for roots cultivated in a DCR medium. The highest reducing power (2.3 µM ± 0.4 TE/g DW), determined by the ferric-reducing antioxidant power assay, was noted for shoots cultivated on an SH medium containing 0.5 mg/L 6-benzylaminopurine. A genetic analysis performed using random amplified polymorphic DNA and start codon targeted markers revealed genetic variation of 62.8% to 96.5% among the investigated shoots and roots. This variability reflects the capacity of cultivated shoots and roots to produce phenolic compounds.
Collapse
Affiliation(s)
- Katarzyna Sykłowska-Baranek
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Małgorzata Gaweł
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Łódź, 1 Muszyńskiego, 90-151 Łódź, Poland
| | - Beata Wileńska
- Faculty of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
- Biological and Chemical Research Centre, 101 Żwirki i Wigury St., 02-097 Warsaw, Poland
| | - Mateusz Kawka
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Małgorzata Jeziorek
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Konstantia Graikou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Ioanna Chinou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Ewa Szyszko
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Piotr Stępień
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Patryk Zakrzewski
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Agnieszka Pietrosiuk
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| |
Collapse
|
9
|
Ozntamar-Pouloglou KM, Cheilari A, Zengin G, Graikou K, Ganos C, Karikas GA, Chinou I. Heliotropium procubens Mill: Taxonomic Significance and Characterization of Phenolic Compounds via UHPLC-HRMS- In Vitro Antioxidant and Enzyme Inhibitory Activities. Molecules 2023; 28:molecules28031008. [PMID: 36770677 PMCID: PMC9921235 DOI: 10.3390/molecules28031008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was the phytochemical analysis of the aerial parts of Heliotropium procumbens Mill., a herb from Boraginaceae plant family not previously studied. The methanol (ME) and aqueous extracts (WE) of the aerial parts were assayed for their total phenolic and flavonoid content and antioxidant properties, using free radical scavenging (DPPH, ABTS), reducing power (FRAP, CUPRAC), phosphomolybdenum and metal chelating assays. The extracts displayed considerable free radical scavenging activity against DPPH and ABTS radicals, with potential values of 46.88 and 68.31 mg TE/g extract for ME, and 93.43 and 131.48 mg TE/g extract for WE, respectively. Key clinical enzymes involved in neurodegenerative diseases AChE and BChE, diabetes (α-amylase and α-glucosidase) and skin whitening (tyrosinase) were also assayed. The phytochemical profile of the studied species was determined through UHPLC-HRMS, whereby 26 secondary metabolites were identified, three of which (luteolin-7-glucoside, lithospermic and rosmarinic acids) were isolated and structurally determined by NMR spectral means. H. procubens was found to harbor bioactive metabolites and could, hence, serve as a source of biological activities which could be further explored and exploited for potential applications.
Collapse
Affiliation(s)
- Kalliopi-Maria Ozntamar-Pouloglou
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece
| | - Antigoni Cheilari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Konstantia Graikou
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece
| | - Christos Ganos
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece
| | - George-Albert Karikas
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece
- Correspondence: (G.-A.K.); (I.C.)
| | - Ioanna Chinou
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece
- Correspondence: (G.-A.K.); (I.C.)
| |
Collapse
|
10
|
Qin S, Liu M, Tang S, Shuai E, Wang Z, Yu K, Cai W. Rapid Characterization and Action Mechanism of the Antidiabetic Effect of Diospyros lotus L Using UHPLC-Q-Exactive Orbitrap MS and Network Pharmacology. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8000126. [PMID: 36624749 PMCID: PMC9825215 DOI: 10.1155/2022/8000126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/27/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Diospyros lotus L, F. Ebenaceae, is an edible fruit that is widely distributed in China and other Asian countries. Presently, Diospyros lotus L can be used to treat patients with diabetes; however, its chemical composition and pharmacological profiles remain to be elucidated. This study investigated the potential bioactive compounds of Diospyros lotus L and their mechanisms of action using LC-MS and network pharmacology analysis. First, the components of Diospyros lotus L were identify using a reliable strategy for UHPLC-Q-Exactive Orbitrap mass spectrometry combined with parallel reaction monitoring (PRM) in the negative ion mode. Second, a network pharmacology study, including target gene prediction and functional enrichment, was applied to screen the main quality markers of Diospyros lotus L and explore its potential mechanism for the treatment of diabetes. The results showed that a total of 159 compounds were identified from Diospyros lotus L, among which, 140 were reported for the first time. Furthermore, 40 active components, such as quercetin, luteolin, and kaempferol, were proposed as active components of Diospyros lotus L for the treatment of diabetes based on network pharmacology analysis. In addition, 92 relevant antidiabetic targets were mainly related to positive regulation of transcription from the RNA polymerase II promoter, extracellular space, and protein binding, suggesting the involvement of TNF, PI3K-Akt, and HIF-1 signaling pathways in the antidiabetic effect of Diospyros lotus L. Our results may provide a useful approach to identify potential active components and molecular mechanisms of Diospyros lotus L for the treatment of diabetes.
Collapse
Affiliation(s)
- Shihan Qin
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Mingjuan Liu
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - E. Shuai
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Ziming Wang
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Kaiquan Yu
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
11
|
HPLC-PDA-ESI-HRMS-Based Profiling of Secondary Metabolites of Rindera graeca Anatomical and Hairy Roots Treated with Drought and Cold Stress. Cells 2022; 11:cells11060931. [PMID: 35326382 PMCID: PMC8946546 DOI: 10.3390/cells11060931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
To cope with environmental harmful conditions, plant cells developed adaptive strategy that involves production of a wide variety of complex secondary metabolites. The spectrum and quantity of biosynthesized compounds in specific plant species is determined by its genotype, tissue, developmental and physiological stage and environmental factors. This phenomenon was used to exploit the potential of anatomical and hairy root cultures of Rindera graeca to produce bioactive compounds. Cultivated in vitro roots were subjected to abiotic stresses i.e., drought or coldness. Next the extract profiling was performed using HPLC-PDA-ESI-HRMS method, as well quantitative determination of caffeic, rosmarinic and lithospermic B acids, that were present in all root extracts. Phenolic acids, flavonoids and iridoids represent the major groups of compounds detected in chemical profiles growing under various conditions roots. The highest number of phytochemicals was determined in roots subjected to coldness. Lithospermic B acid proved to be the most abundant compound in all investigated extracts. Among applied abiotic stress factors it was demonstrated that coldness affected to the most secondary metabolites production. The results of current study suggest that root cultures of R. graeca could serve as a new and abundant source of lithospermic B acid.
Collapse
|
12
|
Graikou K, Damianakos H, Ganos C, Sykłowska-Baranek K, Jeziorek M, Pietrosiuk A, Roussakis C, Chinou I. Chemical Profile and Screening of Bioactive Metabolites of Rindera graeca (A. DC.) Bois. & Heldr. (Boraginaceae) In Vitro Cultures. PLANTS (BASEL, SWITZERLAND) 2021; 10:834. [PMID: 33919433 PMCID: PMC8143363 DOI: 10.3390/plants10050834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022]
Abstract
Rindera graeca is a rare endemic plant where in vitro culture has been used in order to investigate bioactive metabolites. Phytochemical study of the in vitro shoots and hairy roots led to the isolation of seven phenolic derivatives and the unusual furano-naphthoquinone rinderol. R. graeca was also analyzed for its pyrrolizidine alkaloids content by LC-MS, and it was found to contain echinatine together with echinatine and rinderine N-oxides. Rinderol, isolated only from in vitro hairy root culture for the first time in the genus, revealed promising bioactivities. It was evaluated in vitro against a panel of microorganisms, showing very strong activity specifically against Gram-positive bacteria (MIC values 0.98 × 10-2-1.18 µg/mL) as well as very interesting antiproliferative effect against the human non-small-cell bronchopulmonary carcinoma cell line NSCLC-N6-L16 and the epidermoid lung cancer cell line A549. These findings were compared with the chemical profile of the plant from nature, while this study is the first to report on the effects of R. graeca extracts obtained from in vitro culture, providing a valuable contribution to the scientific community towards this sustainable method of production of potential bioactive molecules.
Collapse
Affiliation(s)
- Konstantia Graikou
- Lab of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (K.G.); (H.D.); (C.G.)
| | - Harilaos Damianakos
- Lab of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (K.G.); (H.D.); (C.G.)
| | - Christos Ganos
- Lab of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (K.G.); (H.D.); (C.G.)
| | - Katarzyna Sykłowska-Baranek
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; (K.S.-B.); (M.J.); (A.P.)
| | - Małgorzata Jeziorek
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; (K.S.-B.); (M.J.); (A.P.)
| | - Agnieszka Pietrosiuk
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; (K.S.-B.); (M.J.); (A.P.)
| | - Christos Roussakis
- IICi MED/EA 1155- Dept Cancer du Poumon et Cbles Moleculaires, UFR Sciences Pharmaceutiques- 9 rue Bias, CEDEX 1, 44035 Nantes, France;
| | - Ioanna Chinou
- Lab of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (K.G.); (H.D.); (C.G.)
| |
Collapse
|