1
|
Hsu C, Marx F, Guldenpfennig R, de Godoy MRC. The effects of chicken hydrolyzed proteins in extruded diets on plasma and fecal metabolic profiles in adult dogs. Sci Rep 2024; 14:31620. [PMID: 39738132 DOI: 10.1038/s41598-024-80176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Research has shown various hydrolyzed proteins possessed beneficial physiological functions; however, the mechanism of how hydrolysates influence metabolism is unclear. Therefore, the current study aimed to examine the effects of different sources of protein hydrolysates, being the main dietary protein source in extruded diets, on metabolism in healthy adult dogs. Three complete and balanced extruded canine diets were formulated: control chicken meal diet (CONd), chicken liver and heart hydrolysate diet (CLHd), mechanically separated chicken hydrolysate diet (CHd). A replicated 3 × 5 Latin rectangle design was used with 10 adult beagles. Within each period, the assigned diets were fed to the beagles for 28 days after a 7-day wash out period. Plasma and fresh fecal samples were collected at day 28. Samples of diets, plasma, and feces were analyzed for global metabolomics with ultra-performance liquid chromatography and quadrupole-Orbitrap high-resolution mass spectrometer interfaced with a heated electrospray ionization source and mass analyzer. In general, there were lower fecal concentrations of dipeptides and protein degradation metabolites, indicating higher protein digestibility, in dogs fed protein hydrolysate diets in contrast with CONd (q < 0.05). Higher plasma pipecolate and glutamate, higher fecal spermidine and indole propionate, and lower phenol-derived products in both plasma and feces were found in CLHd group than CONd (q < 0.05), indicating lower oxidative stress and inflammation levels. The main difference in lipid metabolism between CHd and CONd was the bile acid metabolism, showing lower circulating bile acid, lower unconjugated bile acid excretion and higher taurine-conjugated bile acid excretion in the CHd group (q < 0.05). In conclusion, using chicken hydrolysates as the main protein source in extruded canine diets showed potential for physiological benefits in healthy adult dogs, especially protein hydrolysate from chicken heart and liver demonstrated effects on lowering inflammation and oxidation levels.
Collapse
Affiliation(s)
- Clare Hsu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Fabio Marx
- Kemin Industries, Inc, Des Moines, IA, 50317, USA
| | | | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Qiu Y, Wang N, Yu Z, Guo X, Yang M. Changes in the chemical composition and medicinal effects of black ginseng during processing. Front Pharmacol 2024; 15:1425794. [PMID: 39588153 PMCID: PMC11586192 DOI: 10.3389/fphar.2024.1425794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/02/2024] [Indexed: 11/27/2024] Open
Abstract
Aim of the Study To study the changes in the chemical composition and medicinal effects of black ginseng during processing. Materials and Methods The contents of ginsenosides Rg1, Re, Rh1, Rb1, 20-(S)-Rg3, 20-(R)-Rg3, and Rg5 were determined using high-performance liquid chromatography (HPLC), and the percentage of rare saponins was calculated. Furthermore, changes in the contents of reducing sugars and amino acids (i.e., Maillard reaction (MR) substrates) were measured to assess the relationship between processing and the MR. Compounds were identified using HPLC-MS and their cleavage patterns were analyzed. Gene co-expression network bioinformatics techniques were applied to identify the pharmacological mechanism of black ginseng. Results The changes in the physicochemical characteristics of black ginseng during processing were determined based on the MR. Rare saponins accumulated during black ginseng processing. In addition, reducing sugars were produced through polysaccharide pyrolysis and the MR; thus, their content initially increased and then decreased. The amino acid content gradually decreased as the number of evaporation steps increased, indicating that both amino acids and reducing sugars acted as substrates for the MR during black ginseng processing. Thirty-one saponins, 18 sugars, and 58 amino acids were identified based on the MS analysis. Transcriptomics results demonstrated that black ginseng can regulate signaling pathways such as the TNF, IL-17, MAPK, and PI3K-Akt pathways. This finding helps us understand the observed proliferation and differentiation of immune-related cells and positively regulated cell adhesion.
Collapse
Affiliation(s)
- Ye Qiu
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- National Pharmaceutical Engineering Centre for Solid Preparation in Chinese Herbal Medicine, Nanchang, Jiangxi, China
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Nengyuan Wang
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Yu
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiao Guo
- Jilin Cancer Hospital, Changchun, China
| | - Ming Yang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- National Pharmaceutical Engineering Centre for Solid Preparation in Chinese Herbal Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Guo X, Wang Y, Zhu Z, Li L. The Role of Plant Extracts in Enhancing Nutrition and Health for Dogs and Cats: Safety, Benefits, and Applications. Vet Sci 2024; 11:426. [PMID: 39330805 PMCID: PMC11435925 DOI: 10.3390/vetsci11090426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Plant extracts, derived from various natural sources, encompass primary and secondary metabolites, which include plant polysaccharides, polyphenols, alkaloids, flavonoids, glycosides, terpenes, and volatile oils. These compounds exhibit a range of biological activities such as antioxidant, anti-inflammatory, and antimicrobial functions. Currently, polyphenols and other bioactive compounds are being incorporated into the diets of farm animals, fish, and pets to promote health benefits. Despite this, the application and potential of plant extracts in canine and feline nutrition have not been comprehensively explored. Many aspects of the mechanisms underlying the action of these plant metabolites remain to be analyzed and elucidated. Furthermore, leveraging natural plant extracts for the treatment of clinical conditions in dogs and cats is a crucial component of clinical nutrition. Consequently, this review aims to highlight the impact of plant extracts on overall health, gastrointestinal health, immune health, cardiovascular health, redox balance, and pathology in dogs and cats.
Collapse
Affiliation(s)
- Xinzi Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Yifei Wang
- College of Animal Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Zhaoxuan Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Lian Li
- College of Animal Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| |
Collapse
|
4
|
Huang L, Li HJ, Wu YC. Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: A comprehensive review. Food Chem 2023; 407:134714. [PMID: 36495746 DOI: 10.1016/j.foodchem.2022.134714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Abstract
Black ginseng is a novel manufactured ginseng product, and the application of black ginseng products in market is increasing in recent years. Black ginseng is prepared by steaming and fermentation, but not as mature as processing red ginseng. Therefore, complete proposals for preparation techniques are firstly presented. Additionally, there are also abundant chemical components in black ginseng, including ginsenosides, polysaccharides, amino acids, polyphenols, flavonoids, etc. Among them, ginsenosides, polysaccharides and phenolic compounds are the main ingredients, making health benefits of black ginseng stronger than other ginseng products. Therefore, black ginseng as a functional food has come to the market in various forms, such as candies, tea, porridge, soup, etc. The improvement in nutrition, flavor, and safety has exhibited a broad prospect for black ginseng products in food industry. Accordingly, preparation technologies, phytochemistry, health benefits and application of black ginseng are comprehensively evaluated.
Collapse
Affiliation(s)
- Li Huang
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Yan-Chao Wu
- Weihai Jinyiyang Pharmaceutical Co., Ltd, Wendeng District, Weihai 264400, PR China.
| |
Collapse
|
5
|
Enhanced lipid utilization is coupled to the sickness responses triggered by lipopolysaccharide. Biochem Biophys Res Commun 2021; 558:44-50. [PMID: 33895550 DOI: 10.1016/j.bbrc.2021.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Sickness symptoms exerted via inflammatory responses occur in several infectious and chronic diseases. A growing body of evidence suggests that altered nutrient availability and metabolism are tightly coupled to inflammatory processes. However, the relationship between metabolic shifts and the development of the sickness response has not been explored fully. Therefore, we aimed to evaluate metabolic phenotypes with a mouse model showing sickness symptoms via systemic administration of lipopolysaccharide (LPS) in the present study. LPS injection elevated the lipid utilization and circulating levels of fatty acids. It also increased the levels of β-hydroxybutyric acid, a ketone body produced from fatty acids. We confirmed the functional connectivity between nutrient utilization and inflammatory responses and demonstrated enhanced lipid utilization in the hypothalamus providing insights into hypothalamic control of sickness responses. Collectively, these findings could help develop new therapeutic strategies to treat patients with severe sickness symptoms associated with infectious and chronic human diseases.
Collapse
|
6
|
Metabolic Changes in Serum Metabolome of Beagle Dogs Fed Black Ginseng. Metabolites 2020; 10:metabo10120517. [PMID: 33352805 PMCID: PMC7765939 DOI: 10.3390/metabo10120517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
The effects of black ginseng, which has many kinds of biological activities, on dogs was investigated. Serum samples of beagle dogs, which were fed with black ginseng for 8 weeks, were measured using high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectrometry. Acquired NMR data from the serum of dogs fed for 0, 4, and 8 weeks were analyzed by metabolic profiling and multivariate statistical analysis. In statistical analysis and biomarker analysis results of metabolite profiles, formate, glutamine, histidine, isoleucine, leucine, proline, and valine had variable importance in projection (VIP) scores above 1.0 and excellent area under the curve (AUC) values of receiver operating characteristic (ROC) curves above 0.9. In the result of multivariate statistical analysis, the score plot showed the discrimination between before and after feeding of black ginseng. These differences in metabolic profiles are considered to be due to the involvement of metabolic processes following black ginseng administration, such as enhancing immunity and energy metabolism. Through metabolomics analysis, we confirmed the biological efficacy of black ginseng in dogs and also confirmed that metabolomics can be applied to the pet health industry.
Collapse
|