1
|
Ryzhikova OV, Churkina AS, Sedenkova KN, Savchenkova DV, Shakhov AS, Lavrushkina SV, Grishin YK, Zefirov NA, Zefirova ON, Gracheva YA, Milaeva ER, Alieva IB, Averina EB. Mono- and bis(steroids) containing a cyclooctane core: Synthesis, antiproliferative activity, and action on cell cytoskeleton microtubules. Arch Pharm (Weinheim) 2024; 357:e2400483. [PMID: 39079938 DOI: 10.1002/ardp.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 11/06/2024]
Abstract
Steroid dimers of natural and synthetic origin possess an unusual and complex molecular architecture that may lead to the realization of peculiar effects in biological systems, in particular in different cancer cell lines. In the present work, diastereoselective ring-opening of mono- and polyoxiranes, containing a cyclooctane core, by azide-anion was performed to yield a series of azidoalcohols with different types of symmetry. The products were involved in copper-catalyzed azyde-alkyne cycloaddition (CuAAC) reaction with ethinylestradiol and ethinyltestosterone, and the resulting steroids and steroid dimers with triazole linkers were screened for their antiproliferative activity via (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide) assay. All the compounds revealed cytotoxicity toward several cancer cell lines. The effect of the most potent compound, containing two estradiol moieties, on the microtubules (MT) dynamics was investigated by immunofluorescent microscopy. The disruption of the majority of interphase cell cytoplasmic MT and mitotic event disturbances in the presence of the studied compound were observed. The latter effect caused the appearance of numerous multinucleated cells.
Collapse
Affiliation(s)
- Olga V Ryzhikova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksandra S Churkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Anton S Shakhov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana V Lavrushkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri K Grishin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay A Zefirov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Olga N Zefirova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yulia A Gracheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Elena R Milaeva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Irina B Alieva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena B Averina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Kovács F, Huliák I, Árva H, Kiricsi M, Erdős D, Kocsis M, Takács G, Balogh GT, Frank É. Medicinal-Chemistry-Driven Approach to 2-Substituted Benzoxazole-Estradiol Chimeras: Synthesis, Anticancer Activity, and Early ADME Profile. ChemMedChem 2023; 18:e202300352. [PMID: 37727903 DOI: 10.1002/cmdc.202300352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The efficient synthesis of novel estradiol-based A-ring-fused oxazole derivatives, which can be considered as benzoxazole-steroid domain-integrated hybrids containing a common benzene structural motif, is described. The target compounds were prepared from steroidal 2-aminophenol precursors by heterocycle formation or functional group interconversion (FGI) strategies. According to 2D projection-based t-distributed stochastic neighbor embedding (t-SNE), the novel molecules were proved to represent a new chemical space among steroid drugs. They were characterized based on critical physicochemical parameters using in silico and experimental data. The performance of the compounds to inhibit cell proliferation was tested on four human cancer cell lines and non-cancerous cells. Further examinations were performed to reveal IC50 and lipophilic ligand efficiency (LLE) values, cancer cell selectivity, and apoptosis-triggering features. Pharmacological tests and LLE metric revealed that some derivatives, especially the 2-(4-ethylpiperazin-1-yl)oxazole derivative exhibit strong anticancer activity and trigger the apoptosis of cancer cells with relatively low promiscuity risk similarly to the structurally most closely-related and intensively studied anticancer agent, 2-methoxy-estradiol.
Collapse
Affiliation(s)
- Ferenc Kovács
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720, Szeged, Hungary
| | - Ildikó Huliák
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Hédi Árva
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Dóra Erdős
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Marianna Kocsis
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720, Szeged, Hungary
| | - Gergely Takács
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Mcule.com Kft., Bartók Béla út 105-113, 1115, Budapest, Hungary
| | - György T Balogh
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. 9, 1085, Budapest, Hungary
| | - Éva Frank
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720, Szeged, Hungary
| |
Collapse
|
3
|
Zhang Y, Wu C, Zhang N, Fan R, Ye Y, Xu J. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int J Mol Sci 2023; 24:12724. [PMID: 37628906 PMCID: PMC10454718 DOI: 10.3390/ijms241612724] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pyrazole derivatives, as a class of heterocyclic compounds, possess unique chemical structures that confer them with a broad spectrum of pharmacological activities. They have been extensively explored for designing potent and selective anticancer agents. In recent years, numerous pyrazole derivatives have been synthesized and evaluated for their anticancer potential against various cancer cell lines. Structure-activity relationship studies have shown that appropriate substitution on different positions of the pyrazole ring can significantly enhance anticancer efficacy and tumor selectivity. It is noteworthy that many pyrazole derivatives have demonstrated multiple mechanisms of anticancer action by interacting with various targets including tubulin, EGFR, CDK, BTK, and DNA. Therefore, this review summarizes the current understanding on the structural features of pyrazole derivatives and their structure-activity relationships with different targets, aiming to facilitate the development of potential pyrazole-based anticancer drugs. We focus on the latest research advances in anticancer activities of pyrazole compounds reported from 2018 to present.
Collapse
Affiliation(s)
- Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyuan Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Nana Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Patra S, Patra P. A Brief Review on the Design, Synthesis and Biological Evaluation of Pyrazolo[ c]coumarin Derivatives. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2181827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Susanta Patra
- Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Prasanta Patra
- Department of Chemistry, Jhargram Raj College, Jhargram, WB 721507, India
| |
Collapse
|
5
|
Substitutional Diversity-Oriented Synthesis and In Vitro Anticancer Activity of Framework-Integrated Estradiol-Benzisoxazole Chimeras. Molecules 2022; 27:molecules27217456. [PMID: 36364293 PMCID: PMC9654004 DOI: 10.3390/molecules27217456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Hybridization of steroids and other pharmacophores often modifies the bioactivity of the parent compounds, improving selectivity and side effect profile. In this study, estradiol and 3′-(un)substituted benzisoxazole moieties were combined into novel molecules by structural integration of their aromatic rings. Simple estrogen starting materials, such as estrone, estradiol and estradiol-3-methylether were used for the multistep transformations. Some of the heterocyclic derivatives were prepared from the estrane precursor by a formylation or Friedel–Crafts acylation—oximation—cyclization sequence, whereas others were obtained by a functional group interconversion strategy. The antiproliferative activities of the synthesized compounds were assessed on various human cervical, breast and prostate cancer cell lines (HeLa, MCF-7, PC3, DU-145) and non-cancerous MRC-5 fibroblast cells. Based on the primary cytotoxicity screens, the most effective cancer-selective compounds were selected, their IC50 values were determined and their apoptosis-inducing potential was evaluated by quantitative real-time PCR. Pharmacological studies revealed a strong structure–function relationship, where derivatives with a hydroxyl group on C-17 exhibited stronger anticancer activity compared to the 17-acetylated counterparts. The present study concludes that novel estradiol-benzisoxazole hybrids exert remarkable cancer cell-specific antiproliferative activity and trigger apoptosis in cancer cells.
Collapse
|
6
|
Molnár B, Gopisetty MK, Nagy FI, Adamecz DI, Kása Z, Kiricsi M, Frank É. Efficient access to domain-integrated estradiol-flavone hybrids via the corresponding chalcones and their in vitro anticancer potential. Steroids 2022; 187:109099. [PMID: 35970223 DOI: 10.1016/j.steroids.2022.109099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
Structural modification of the phenolic A-ring of estrogens at C-2 and/or C-3 significantly reduces or eliminates the hormonal effects of the compounds, thus the incorporation of other pharmacophores into these positions can provide biologically active derivatives suitable for new indications, without possessing unwanted side effects. As part of this work, A-ring integration of estradiol with chalcones and flavones was carried out in the hope of obtaining novel molecular hybrids with anticancer action. The syntheses were performed from 2-acetylestradiol-17β-acetate which was first reacted with various (hetero)aromatic aldehydes in a pyrrolidine-catalyzed reaction in DMSO. The chalcones thus obtained were then subjected to oxidative cyclization with I2 in DMSO to afford estradiol-flavone hybrids in good yields. All newly synthesized derivatives were tested in vitro for cytotoxicity on human malignant cell lines of diverse origins as well as on a non-cancerous cell line, and the results demonstrated that estradiol-flavone hybrids containing a structure-integrated flavone moiety were the most active and cancer cell-selective agents. The minimal inhibitory concentration values (IC50) were calculated for selected compounds (3c, 3d and 3e) and their apoptosis inducing capacity was verified by RT-qPCR (real-time quantitative polymerase chain reaction). The results suggest an important structure-activity relationship regarding estradiol-flavone hybrids that could form a promising synthetic platform and rationale for future drug developments.
Collapse
Affiliation(s)
- Barnabás Molnár
- Department of Organic Chemistry, Doctoral School of Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Mohana K Gopisetty
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; Interdisciplinary Center of Excellence, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Ferenc István Nagy
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Dóra Izabella Adamecz
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Zsolt Kása
- Material and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, H-6720 Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Éva Frank
- Department of Organic Chemistry, Doctoral School of Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
7
|
Molnár B, Kinyua NI, Mótyán G, Leits P, Zupkó I, Minorics R, Balogh GT, Frank É. Regioselective synthesis, physicochemical properties and anticancer activity of 2-aminomethylated estrone derivatives. J Steroid Biochem Mol Biol 2022; 219:106064. [PMID: 35091086 DOI: 10.1016/j.jsbmb.2022.106064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
The unique estrogen receptor (ER)-independent antiproliferative and apoptotic activity of 2-methoxyestradiol (2ME2) is well known, however, its use has been limited because of its poor oral bioavailability. In this study, novel 2-aminomethylated estrone (E) and estradiol (E2) derivatives structurally related to 2ME2 were synthesized, and their physicochemical properties as well as their in vitro cytotoxic effects were investigated in the hope of finding more selective antiproliferative agents with improved pharmacokinetic profile. The target compounds were synthesized from 2-dimethylaminomethylated E obtained regioselectively by a three-component Mannich reaction. Quaternization with methyl iodide followed by reacting the ammonium salt with various dialkyl and alicyclic secondary amines afforded the desired products in good yields. The reactions proceeded via a 1,4-nucleophilic addition of the applied secondary amines to the ortho-quinone methide (o-QM) intermediates, generated in situ from the salt by base-promoted β-elimination. The compound library has been enlarged with structurally similar E2 analogues obtained by stereoselective reduction and with some 17β-benzylamino derivatives prepared by reductive amination. The potential values of the novel E and E2 derivatives were characterised by means of three different approaches. At the first step compounds were virtually screened using physicochemical parameters. Physicochemical characterization was completed by kinetic solubility and in vitro intestinal-specific permeability measurement. Antiproliferative effects were additionally determined on a panel of malignant and non-cancerous cell lines. The evaluation of the pharmacological profile of the novel E and E2 derivatives was completed with the calculation of lipophilic efficacy (LiPE).
Collapse
Affiliation(s)
- Barnabás Molnár
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Njangiru Isaac Kinyua
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Gergő Mótyán
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Péter Leits
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - György T Balogh
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
8
|
Nitrogen-Containing Heterocycles as Significant Molecular Scaffolds for Medicinal and Other Applications. Molecules 2021; 26:molecules26154617. [PMID: 34361770 PMCID: PMC8347225 DOI: 10.3390/molecules26154617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
|
9
|
Kovács F, Gopisetty MK, Adamecz DI, Kiricsi M, Enyedy ÉA, Frank É. Synthesis and conversion of primary and secondary 2-aminoestradiols into A-ring-integrated benzoxazolone hybrids and their in vitro anticancer activity. RSC Adv 2021; 11:13885-13896. [PMID: 35423928 PMCID: PMC8697693 DOI: 10.1039/d1ra01889b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 01/19/2023] Open
Abstract
Hybrid systems are often endowed with completely different and improved properties compared to their parent compounds. In order to extend the chemical space toward sterane-based molecular hybrids, a number of estradiol-derived benzoxazol-2-ones with combined aromatic rings were synthesized via the corresponding 2-aminophenol intermediates. 2-Aminoestradiol was first prepared from estrone by a two-step nitration/reduction sequence under mild reaction conditions. Subsequent reductive aminations with different arylaldehydes furnished secondary 2-aminoestradiol derivatives in good yields. The proton dissociation processes of the aminoestradiols were investigated in aqueous solution by UV-visible spectrophotometric titrations to reveal their actual chemical forms at physiological pH. The determined pK1 and pK2 values are attributed to the +NH3 or +NH2R and OH moieties, and both varied by the different R substituents of the amino group. Primary and secondary 2-aminoestradiols were next reacted with carbonyldiimidazole as a phosgene equivalent to introduce a carbonyl group with simultaneous ring-closure to give A-ring-fused oxazolone derivatives in high yields. The novel aminoestradiols and benzoxazolones were subjected to in vitro cytotoxicity analysis and were found to exert cancer cell specific activity. Estradiol–benzoxazolone hybrids with a common aromatic moiety were efficiently synthesized via primary and secondary aminophenol intermediates, and their anticancer activities were investigated.![]()
Collapse
Affiliation(s)
- Ferenc Kovács
- Department of Organic Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary +36-62-544-275
| | - Mohana K Gopisetty
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged Közép fasor 52 H-6726 Szeged Hungary
| | - Dóra I Adamecz
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged Közép fasor 52 H-6726 Szeged Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged Közép fasor 52 H-6726 Szeged Hungary
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged Dóm tér 7 H-6720 Szeged Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged Dóm tér 7 H-6720 Szeged Hungary
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary +36-62-544-275
| |
Collapse
|
10
|
Patra P. 4-Chloro-3-formylcoumarin as a multifaceted building block for the development of various bio-active substituted and fused coumarin heterocycles: a brief review. NEW J CHEM 2021. [DOI: 10.1039/d1nj02755g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review presents the diverse synthesis of 3,4-substituted coumarins and 5-, 6- and 7-membered ring fused coumarins using 4-chloro-3-formylcoumarin as the precursor via classical reactions including metal-catalyzed and green reaction protocols.
Collapse
Affiliation(s)
- Prasanta Patra
- Department of Chemistry
- Jhargram Raj College
- Jhargram 721507
- India
| |
Collapse
|