1
|
Tienaho J, Fidelis M, Brännström H, Hellström J, Rudolfsson M, Kumar Das A, Liimatainen J, Kumar A, Kurkilahti M, Kilpeläinen P. Valorizing Assorted Logging Residues: Response Surface Methodology in the Extraction Optimization of a Green Norway Spruce Needle-Rich Fraction To Obtain Valuable Bioactive Compounds. ACS SUSTAINABLE RESOURCE MANAGEMENT 2024; 1:237-249. [PMID: 38414817 PMCID: PMC10895920 DOI: 10.1021/acssusresmgt.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
During stemwood harvesting, substantial volumes of logging residues are produced as a side stream. Nevertheless, industrially feasible processing methods supporting their use for other than energy generation purposes are scarce. Thus, the present study focuses on biorefinery processing, employing response surface methodology to optimize the pressurized extraction of industrially assorted needle-rich spruce logging residues with four solvents. Eighteen experimental points, including eight center point replicates, were used to optimize the extraction temperature (40-135 °C) and time (10-70 min). The extraction optimization for water, water with Na2CO3 + NaHSO3 addition, and aqueous ethanol was performed using yield, total dissolved solids (TDS), antioxidant activity (FRAP, ORAC), antibacterial properties (E. coli, S. aureus), total phenolic content (TPC), condensed tannin content, and degree of polymerization. For limonene, evaluated responses were yield, TDS, antioxidant activity (CUPRAC, DPPH), and TPC. Desirability surfaces were created using the responses showing a coefficient of determination (R2) > 0.7, statistical significance (p ≤ 0.05), precision > 4, and statistically insignificant lack-of-fit (p > 0.1). The optimal extraction conditions were 125 °C and 68 min for aqueous ethanol, 120 °C and 10 min for water, 111 °C and 49 min for water with Na2CO3 + NaHSO3 addition, and 134 °C and 41 min for limonene. The outcomes contribute insights to industrial logging residue utilization for value-added purposes.
Collapse
Affiliation(s)
- Jenni Tienaho
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Marina Fidelis
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Hanna Brännström
- Production Systems, Natural Resources Institute Finland (Luke), Teknologiakatu 7, FI-67100 Kokkola, Finland
| | - Jarkko Hellström
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland
| | - Magnus Rudolfsson
- Unit of Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Atanu Kumar Das
- Unit of Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Jaana Liimatainen
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Anuj Kumar
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Mika Kurkilahti
- Natural Resources, Natural Resources Institute Finland (Luke), Itäinen Pitkäkatu 4 A, FI-20520 Turku, Finland
| | - Petri Kilpeläinen
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
2
|
Jyske T, Liimatainen J, Tienaho J, Brännström H, Aoki D, Kuroda K, Reshamwala D, Kunnas S, Halmemies E, Nakayama E, Kilpeläinen P, Ora A, Kaseva J, Hellström J, Marjomäki VS, Karonen M, Fukushima K. Inspired by nature: Fiber networks functionalized with tannic acid and condensed tannin-rich extracts of Norway spruce bark show antimicrobial efficacy. Front Bioeng Biotechnol 2023; 11:1171908. [PMID: 37152647 PMCID: PMC10154533 DOI: 10.3389/fbioe.2023.1171908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
This study demonstrated the antibacterial and antiviral potential of condensed tannins and tannic acid when incorporated into fiber networks tested for functional material purposes. Condensed tannins were extracted from industrial bark of Norway spruce by using pressurized hot water extraction (PHWE), followed by purification of extracts by using XADHP7 treatment to obtain sugar-free extract. The chemical composition of the extracts was analyzed by using HPLC, GC‒MS and UHPLC after thiolytic degradation. The test matrices, i.e., lignocellulosic handsheets, were produced and impregnated with tannin-rich extracts, and tannic acid was used as a commercial reference. The antibacterial and antiviral efficacy of the handsheets were analyzed by using bioluminescent bacterial strains (Staphylococcus aureus RN4220+pAT19 and Escherichia coli K12+pCGLS11) and Enterovirus coxsackievirus B3. Potential bonding of the tannin-rich extract and tannic acid within the fiber matrices was studied by using FTIR-ATR spectroscopy. The deposition characteristics (distribution and accumulation patterns) of tannin compounds and extracts within fiber networks were measured and visualized by direct chemical mapping using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and digital microscopy. Our results demonstrated for the first time, how tannin-rich extracts obtained from spruce bark side streams with green chemistry possess antiviral and antibacterial properties when immobilized into fiber matrices to create substitutes for plastic hygienic products, personal protection materials such as surgical face masks, or food packaging materials to prolong the shelf life of foodstuffs and prevent the spread of infections. However, more research is needed to further develop this proof-of-concept to ensure stable chemical bonding in product prototypes with specific chemistry.
Collapse
Affiliation(s)
- Tuula Jyske
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki, Finland
| | - Jaana Liimatainen
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki, Finland
| | - Jenni Tienaho
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki, Finland
| | - Hanna Brännström
- Natural Resources Institute Finland, Teknologiakatu 7, Kokkola, Finland
| | - Dan Aoki
- Department of Forest and Environmental Resources Sciences, Nagoya University, Nagoya, Japan
| | - Katsushi Kuroda
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Susan Kunnas
- Natural Resources Institute Finland, Ounasjoentie 6, Rovaniemi, Finland
| | - Eelis Halmemies
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Eiko Nakayama
- Department of Environmental Science Design, Showa Women’s University, Tokyo, Japan
| | - Petri Kilpeläinen
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki, Finland
| | - Ari Ora
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki, Finland
| | - Janne Kaseva
- Natural Resources Institute Finland, Myllytie 1, Jokioinen, Finland
| | - Jarkko Hellström
- Natural Resources Institute Finland, Myllytie 1, Jokioinen, Finland
| | - Varpu S. Marjomäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Kazuhiko Fukushima
- Department of Forest and Environmental Resources Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Peltoniemi K, Velmala S, Fritze H, Jyske T, Rasi S, Pennanen T. Impacts of coniferous bark-derived organic soil amendments on microbial communities in arable soil - a microcosm study. FEMS Microbiol Ecol 2023; 99:7022313. [PMID: 36725205 PMCID: PMC10013654 DOI: 10.1093/femsec/fiad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
A decline in the carbon content of agricultural soils has been reported globally. Amendments of forest industry side-streams might counteract this. We tested the effects of industrial conifer bark and its cascade process materials on the soil microbiome under barley (Hordeum vulgare L.) in clay and silt soil microcosms for 10 months, simulating the seasonal temperature changes of the boreal region. Microbial gene copy numbers were higher in clay soils than in silt. All amendments except unextracted bark increased bacterial gene copies in both soils. In turn, all other amendments, but not unextracted bark from an anaerobic digestion process, increased fungal gene copy numbers in silt soil. In clay soil, fungal increase occurred only with unextracted bark and hot water extracted bark. Soil, amendment type and simulated season affected both the bacterial and fungal community composition. Amendments increased bacteria originating from the anaerobic digestion process, as well as dinitrogen fixers and decomposers of plant cells. In turn, unextracted and hot water extracted bark determined the fungal community composition in silt. As fungal abundance increase and community diversification are related to soil carbon acquisition, bark-based amendments to soils can thus contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Krista Peltoniemi
- Corresponding author. Soil Ecosystems, Natural Resources, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.E-mail:
| | - Sannakajsa Velmala
- Natural Resources, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00720 Helsinki, Finland
| | - Hannu Fritze
- Natural Resources, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00720 Helsinki, Finland
| | - Tuula Jyske
- Production Systems, Natural Resources Institute Finland (Luke), Viikinkaari 9, FI-00720 Helsinki, Finland
| | - Saija Rasi
- Production Systems, Natural Resources Institute Finland (Luke), Survontie 9, FI-40500 Jyväskylä, Finland
| | - Taina Pennanen
- Natural Resources, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00720 Helsinki, Finland
| |
Collapse
|
4
|
Golubkina N, Plotnikova U, Lapchenko V, Lapchenko H, Sheshnitsan S, Amagova Z, Matsadze V, Naumenko T, Bagrikova N, Logvinenko L, Sakhno T, Shevchuk O, Pirogov N, Caruso G. Evaluation of Factors Affecting Tree and Shrub Bark's Antioxidant Status. PLANTS (BASEL, SWITZERLAND) 2022; 11:2609. [PMID: 36235475 PMCID: PMC9571727 DOI: 10.3390/plants11192609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The importance of using the barks of trees and shrubs as powerful natural antioxidants suggests the necessity to evaluate the effect of different environmental factors on bark extracts’ quality. The determination of total antioxidant activity (AOA) and polyphenol content (TP) in the bark of 58 tree and shrub species from 7 regions differing in mean annual temperature, insolation, humidity, salinity level, and altitude was performed. The above stress factors positively affected bark AOA but did not have a statistically significant effect on TP. The bark of trees grown in the seashore proximity was characterized by significantly higher AOA than samples gathered in other areas, similarly to the trees grown at high altitude. The bark antioxidant status of 18 species was described for the first time. New sources of powerful antioxidants were represented by the ornamental shrubs Cornus sanguinea and Cornus alba, which showed the highest AOA (169−171 mg GAE g−1 d.w.). Among the typical halophytes, Calligonum and Tamarix had high AOA (172 and 85 mg GAE g−1 d.w.), while in the bark of tamarisk, an Se accumulator, an Se concentration of about 900 µg kg−1 d.w. was recorded. A significant positive correlation was found between leaves and bark AOA in the Karadag Nature Reserve’s deciduous trees (r = 0.898, p < 0.01). The relationship between bark AOA and TP was highly significant (r = 0.809; p < 0.001) for all samples except the mountainous ones. The results of the present research revealed new opportunities in successive bark utilization.
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Ulyana Plotnikova
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Vladimir Lapchenko
- T.I. Vyazemsky Karadag Scientific Station, Nature Reserve of RAS, 298188 Feodosia, Russia
| | - Helene Lapchenko
- T.I. Vyazemsky Karadag Scientific Station, Nature Reserve of RAS, 298188 Feodosia, Russia
| | - Sergey Sheshnitsan
- Department of Landscape Architecture and Soil Science, Voronezh State University of Forestry and Technologies, 394036 Voronezh, Russia
| | - Zarema Amagova
- Chechen Scientific Institute of Agriculture, 366021 Gikalo, Grozny Region, Russia
| | - Visita Matsadze
- Chechen Scientific Institute of Agriculture, 366021 Gikalo, Grozny Region, Russia
| | - Tatiana Naumenko
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Natalia Bagrikova
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Lidia Logvinenko
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Tatiana Sakhno
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Oksana Shevchuk
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Nikolay Pirogov
- Bogdinsko-Baskunchak Nature Reserve, 416532 Akhtubinsk, Russia
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
5
|
Extractives of Tree Biomass of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Lipophilic Compounds, Stilbenes, and Lignans. FORESTS 2022. [DOI: 10.3390/f13050779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the study was to quantify total extractive contents and lipophilic compounds, stilbenes, and lignans in Scots pine stem wood, stem bark, branch biomass, and sawmill residues in four climatic regions of Finland to evaluate the most optimal sources of extractives for bio-based chemical biorefining and bioenergy products. Data were derived from 78 chip samples from the before-mentioned raw materials, the samples being pooled by tree height position from the sample trees of 42 experimental forest stands, and sawdust lots from 10 log stands. Accelerated solvent extraction (ASE) was employed to determine total extractive contents, followed by gas chromatography with flame ionization detection (GC–FID) to quantify extractive groups and gas chromatography-mass spectrometry (GC–MS) to analyse individual extractive compounds. Resin acids and triglycerides followed by fatty acids were the dominant extractive groups. Resin acids were most abundant in stem wood from final fellings and in sawdust, fatty acids in bark and branch biomass, and triglycerides also in stem wood from thinnings and the top parts of trees. Of the minor extractive groups, stilbenes were the most abundant in stem wood from final fellings and in sawdust, and steryl esters, sterols, and lignans in bark and branch biomass, the two last groups almost missing from other biomass components. Regional differences in the contents of extractive groups were generally small, 1.0−1.5 percentage points at the maximum, but factor analysis distinguished northern and southern regions into their own groups. Bark was the most potential source of fatty acids and sterols in southern Finland, and triglycerides and steryl esters in northern Finland. In stem wood, steryl esters, triglycerides, and lignans decreased and stilbenes increased from north to south. Certain fatty acids and resin acids were more frequent in the north. The results highlighted the importance of focused procurement and efficient sorting of raw materials, purity, unique properties, and feasible isolation techniques for competitive ability as well as large raw material volumes or well-defined value-added products.
Collapse
|
6
|
Halmemies ES, Alén R, Hellström J, Läspä O, Nurmi J, Hujala M, Brännström HE. Behaviour of Extractives in Norway Spruce ( Picea abies) Bark during Pile Storage. Molecules 2022; 27:1186. [PMID: 35208976 PMCID: PMC8878638 DOI: 10.3390/molecules27041186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
The current practices regarding the procurement chain of forest industry sidestreams, such as conifer bark, do not always lead to optimal conditions for preserving individual chemical compounds. This study investigates the standard way of storing bark in large piles in an open area. We mainly focus on the degradation of the most essential hydrophilic and hydrophobic extractives and carbohydrates. First, two large 450 m3 piles of bark from Norway spruce (Picea abies) were formed, one of which was covered with snow. The degradation of the bark extractives was monitored for 24 weeks. Samples were taken from the middle, side and top of the pile. Each sample was extracted at 120 °C with both n-hexane and water, and the extracts produced were then analysed chromatographically using gas chromatography with flame ionisation or mass selective detection and high-performance liquid chromatography. The carbohydrates were next analysed using acidic hydrolysis and acidic methanolysis, followed by chromatographic separation of the monosaccharides formed and their derivatives. The results showed that the most intensive degradation occurred during the first 4 weeks of storage. The levels of hydrophilic extractives were also found to decrease drastically (69% in normal pile and 73% in snow-covered pile) during storage, whereas the decrease in hydrophobic extractives was relatively stable (15% in normal pile and 8% in snow-covered pile). The top of the piles exhibited the most significant decrease in the total level of extractives (73% in normal and snow-covered pile), whereas the bark in the middle of the pile retained the highest amount of extractives (decreased by 51% in normal pile and 47% in snow-covered pile) after 24-week storage.
Collapse
Affiliation(s)
- Eelis S. Halmemies
- Department of Chemistry, University of Jyväskylä, Survontie 9, 40500 Jyväskylä, Finland;
- Natural Resources Institute Finland, Teknologiakatu 7, 67100 Kokkola, Finland; (J.N.); (H.E.B.)
| | - Raimo Alén
- Department of Chemistry, University of Jyväskylä, Survontie 9, 40500 Jyväskylä, Finland;
| | - Jarkko Hellström
- Natural Resources Institute Finland, Tietotie 4, 31600 Jokioinen, Finland;
| | - Otto Läspä
- School of Engineering and Natural Resources, Oulu University of Applied Sciences, Yliopistonkatu 9, 90570 Oulu, Finland;
| | - Juha Nurmi
- Natural Resources Institute Finland, Teknologiakatu 7, 67100 Kokkola, Finland; (J.N.); (H.E.B.)
| | - Maija Hujala
- School of Business and Management, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland;
| | - Hanna E. Brännström
- Natural Resources Institute Finland, Teknologiakatu 7, 67100 Kokkola, Finland; (J.N.); (H.E.B.)
| |
Collapse
|
7
|
Sut S, Baldan V, Faggian M, Ferrarese I, Maccari E, Teobaldo E, De Zordi N, Bertoni P, Peron G, Dall’Acqua S. The Bark of Picea abies L., a Waste from Sawmill, as a Source of Valuable Compounds: Phytochemical Investigations and Isolation of a Novel Pimarane and a Stilbene Derivative. PLANTS 2021; 10:plants10102106. [PMID: 34685915 PMCID: PMC8538736 DOI: 10.3390/plants10102106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 01/05/2023]
Abstract
In this work, the sawmill waste from Picea abies debarking was considered as source of valuable phytoconstituents. The extraction was performed using different ethanol/water mixtures, and characterization was obtained by LC-MSn. This latter revealed flavonoid glycosides, lignans, and procyanidins. Extraction with organic solvents (dichloromethane and methanol) and chromatographic separations of the obtained extracts by silica column followed by semi-preparative HPLC led to the isolation of polyphenols and terpenoids such as 21α-metoxy-serrat-14-en-3-one, 21α-hydroxy-serrat-14-en-3-one, pinoresinol, dehydroabietic acid, 15-hydroxy-dehydroabietic acid, 7-oxo-dehydroabietic acid, pimaric acid, 9β-pimara-7,15-dien-19-ol, 13-epi-manoyl oxide, taxifolin-3'-O-glucopyranoside, trans-astringin, and piceasides. Piceaside V and 9β-pimara-7-keto-19β-olide, two novel compounds identified for the first time in P. abies bark, were isolated, and their structures were elucidated using 1D and 2D NMR and MS techniques. The polyphenolic composition of the methanolic portion was also investigated using LC-MSn, and the piceaside content was estimated. To assess the antioxidant activity of main constituents, semi-preparative HPLC was performed on the methanolic extract, and the obtained fractions were assayed by using the DPPH test. Overall, this work shows the potential usefulness of P. abies bark as a source of valuable phytochemicals.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (V.B.); (I.F.); (E.M.); (E.T.); (G.P.)
| | - Valeria Baldan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (V.B.); (I.F.); (E.M.); (E.T.); (G.P.)
| | - Marta Faggian
- Unired Srl, Via Niccolò Tommaseo 69, 35131 Padova, Italy;
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (V.B.); (I.F.); (E.M.); (E.T.); (G.P.)
| | - Erica Maccari
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (V.B.); (I.F.); (E.M.); (E.T.); (G.P.)
| | - Eduardo Teobaldo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (V.B.); (I.F.); (E.M.); (E.T.); (G.P.)
| | - Nicola De Zordi
- Società Agricola Moldoi—S.A.M, SrL, Loc. Maras Moldoi 151/a, 32037 Sospirolo, Italy;
| | - Paolo Bertoni
- Holz Pichler SpA, Ega—Stenk 2, 39050 Bolzano, Italy;
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (V.B.); (I.F.); (E.M.); (E.T.); (G.P.)
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (V.B.); (I.F.); (E.M.); (E.T.); (G.P.)
- Unired Srl, Via Niccolò Tommaseo 69, 35131 Padova, Italy;
- Correspondence: ; Tel.: +39-049-8275332
| |
Collapse
|
8
|
Effect of Seasonal Storage on Single-Stem Bark Extractives of Norway Spruce (Picea abies). FORESTS 2021. [DOI: 10.3390/f12060736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing the net value of forestry side-streams has both ecological as well as economic benefits for emerging biorefining industries. Spruce bark represents one of the nature’s abundant sources of valuable extractives. In this study, the impact of storage on the quality and quantity of Norway spruce (Picea abies) extractives was examined as a function of storage time, environmental conditions and season (i.e., winter or summer). The bark from stored spruce saw logs was extracted with an accelerated solvent extractor (ASE) at 120 °C with hexane and water. The produced extracts were analysed qualitatively and quantitatively by gas chromatography with a flame ionisation detector (GC-FID) and high-performance liquid chromatography (HPLC) methods. The total amount of phenolics in the water extracts was evaluated by the Folin–Ciocalteu method, while the carbohydrate and lignin content of the extractive-free bark was estimated by acidic hydrolysis and acidic methanolysis. According to the results, storage season and temperature dramatically influenced both the chemical composition and degradation rate of bark extractives. After a storage period of 24 weeks, the winter-stored saw log bark retained 22% more hydrophilic extractives than the summer-stored bark. Lipophilic extractives, however, were 14% higher during the summer. Notably, the average amount of monomeric stilbenoids was 61% higher during the winter storage period. The initial total phenolic content in the water extracts was significantly higher during winter, but the degradation rate was about equal during winter and summer. The amount of cellulose in dry bark decreased from 17% to 11% and from 13% to 6% during winter and summer, respectively. By contrast, hemicelluloses increased from 17% to 26% and 15% to 30% during winter and summer, respectively. Overall, it was demonstrated that the seasonal factors of storage greatly affected the degradation rate of valuable spruce bark extractives, which should be considered in the planning stages of the raw materials procurement chain.
Collapse
|