1
|
Mara A, Caredda M, Addis M, Sanna F, Deroma M, Georgiou CA, Langasco I, Pilo MI, Spano N, Sanna G. Elemental Fingerprinting of Pecorino Romano and Pecorino Sardo PDO: Characterization, Authentication and Nutritional Value. Molecules 2024; 29:869. [PMID: 38398621 PMCID: PMC10892592 DOI: 10.3390/molecules29040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Sardinia, located in Italy, is a significant producer of Protected Designation of Origin (PDO) sheep cheeses. In response to the growing demand for high-quality, safe, and traceable food products, the elemental fingerprints of Pecorino Romano PDO and Pecorino Sardo PDO were determined on 200 samples of cheese using validated, inductively coupled plasma methods. The aim of this study was to collect data for food authentication studies, evaluate nutritional and safety aspects, and verify the influence of cheesemaking technology and seasonality on elemental fingerprints. According to European regulations, one 100 g serving of both cheeses provides over 30% of the recommended dietary allowance for calcium, sodium, zinc, selenium, and phosphorus, and over 15% of the recommended dietary intake for copper and magnesium. Toxic elements, such as Cd, As, Hg, and Pb, were frequently not quantified or measured at concentrations of toxicological interest. Linear discriminant analysis was used to discriminate between the two types of pecorino cheese with an accuracy of over 95%. The cheese-making process affects the elemental fingerprint, which can be used for authentication purposes. Seasonal variations in several elements have been observed and discussed.
Collapse
Affiliation(s)
- Andrea Mara
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy; (I.L.); (M.I.P.); (N.S.)
| | - Marco Caredda
- Department of Animal Science, Agris Sardegna, S.S. 291 Sassari-Fertilia, Km. 18,600, I-07040 Sassari, Italy; (M.C.); (M.A.)
| | - Margherita Addis
- Department of Animal Science, Agris Sardegna, S.S. 291 Sassari-Fertilia, Km. 18,600, I-07040 Sassari, Italy; (M.C.); (M.A.)
| | - Francesco Sanna
- Department of Environmental Studies, Crop Protection and Production Quality Agris Sardegna, Viale Trieste 111, I-09123 Cagliari, Italy;
| | - Mario Deroma
- Department of Agriculture, University of Sassari, Viale Italia, 39A, I-07100 Sassari, Italy;
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece;
- FoodOmics.GR Research Infrastructure, Agricultural University of Athens, 118 55 Athens, Greece
| | - Ilaria Langasco
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy; (I.L.); (M.I.P.); (N.S.)
| | - Maria I. Pilo
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy; (I.L.); (M.I.P.); (N.S.)
| | - Nadia Spano
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy; (I.L.); (M.I.P.); (N.S.)
| | - Gavino Sanna
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy; (I.L.); (M.I.P.); (N.S.)
| |
Collapse
|
2
|
Giampaoli O, Messi M, Merlet T, Sciubba F, Canepari S, Spagnoli M, Astolfi ML. Landfill fire impact on bee health: beneficial effect of dietary supplementation with medicinal plants and probiotics in reducing oxidative stress and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31561-x. [PMID: 38158534 DOI: 10.1007/s11356-023-31561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
The honey bee is an important pollinator insect susceptible to environmental contaminants. We investigated the effects of a waste fire event on elemental content, oxidative stress, and metabolic response in bees fed different nutrients (probiotics, Quassia amara, and placebo). The level of the elements was also investigated in honey and beeswax. Our data show a general increase in elemental concentrations in all bee groups after the event; however, the administration of probiotics and Quassia amara help fight oxidative stress in bees. Significantly lower concentrations of Ni, S, and U for honey in the probiotic group and a general and significant decrease in elemental concentrations for beeswax in the probiotic group and Li in the Quassia amara group were observed after the fire waste event. The comparison of the metabolic profiles through pre- and post-event PCA analyses showed that bees treated with different feeds react differently to the environmental event. The greatest differences in metabolic profiles are observed between the placebo-fed bees compared to the others. This study can help to understand how some stress factors can affect the health of bees and to take measures to protect these precious insects.
Collapse
Affiliation(s)
- Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Marcello Messi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Thomas Merlet
- Department of Chemistry, Toulouse INP - ENSIACET, 4 Allée Emile Monso, 31030, Toulouse, France
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St, 00015, Rome, Italy
| | - Mariangela Spagnoli
- Department of Medicine, Epidemiology, Environmental and Occupational Hygiene, INAIL, via Fontana Candida 1, 00078, Monte Porzio Catone, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
3
|
Végh R, Csóka M, Mednyánszky Z, Sipos L. Potentially toxic trace elements in bee bread, propolis, beeswax and royal jelly - A review of the literature and dietary risk assessment. CHEMOSPHERE 2023; 339:139571. [PMID: 37474035 DOI: 10.1016/j.chemosphere.2023.139571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Scientific evidence suggests that apicultural products accumulate pollutants present in the hive environment, thus, they can be used as bioindicators. However, our understanding on the food safety implications of the presence of potentially toxic trace elements in these products remains incomplete. In our study, available data on the trace metal content of bee bread, propolis, beeswax and royal jelly, as well as their possible sources are reviewed. Furthermore, dietary risk assessments were conducted for elements that do not have any biological role in humans by comparing the estimated exposures with official reference values. In the case of elements with genotoxic carcinogen potential, the margin of exposure (MoE) approach was applied. The observed concentration ranges vary over a wide range for Fe (0.94-2125.20 mg/kg), Zn (
Collapse
Affiliation(s)
- Rita Végh
- Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Nutrition, 1118, Budapest, Somlói út 14-16., Hungary
| | - Mariann Csóka
- Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Nutrition, 1118, Budapest, Somlói út 14-16., Hungary
| | - Zsuzsanna Mednyánszky
- Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Nutrition, 1118, Budapest, Somlói út 14-16., Hungary
| | - László Sipos
- Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Postharvest, Commercial and Sensory Science, 1118, Budapest, Villányi út 29-43., Hungary; Institute of Economics, Centre of Economic and Regional Studies, Loránd Eötvös Research Network, 1097, Budapest, Tóth Kálmán Utca 4., Hungary.
| |
Collapse
|
4
|
Astolfi ML, Massimi L, Rapa M, Plà RR, Jasan RC, Tudino MB, Canepari S, Conti ME. A multi-analytical approach to studying the chemical composition of typical carbon sink samples. Sci Rep 2023; 13:7971. [PMID: 37198446 DOI: 10.1038/s41598-023-35180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023] Open
Abstract
Peatlands in southern South America (Tierra del Fuego region, TdF) play a key role in the ecological dynamics of Patagonia. It is, therefore, necessary to increase our knowledge and awareness of their scientific and ecological value to ensure their conservation. This study aimed to assess the differences in the distribution and accumulation of elements in peat deposits and Sphagnum moss from the TdF. Chemical and morphological characterization of the samples was carried out using various analytical techniques, and total levels of 53 elements were determined. Furthermore, a chemometric differentiation based on the elemental content of peat and moss samples was performed. Some elements (Cs, Hf, K, Li, Mn, Na, Pb, Rb, Si, Sn, Ti and Zn) showed significantly higher contents in moss samples than in peat samples. In contrast, only Mo, S and Zr were significantly higher in peat samples than in moss samples. The results obtained highlight the ability of moss to accumulate elements and to act as a means to facilitate the entry of elements into peat samples. The valuable data obtained in this multi-methodological baseline survey can be used for more effective conservation of biodiversity and preservation of the ecosystem services of the TdF.
Collapse
Affiliation(s)
- Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- CIABC, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., 00015, Rome, Italy
| | - Mattia Rapa
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, 00161, Rome, Italy
| | - Rita Rosa Plà
- Departamento Química Nuclear, Gerencia Química Nuclear y Ciencias de la Salud (GAATN), Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica (CNEA), Av. Presbítero J. González y Aragón 15 (CP B1802AYA), Ezeiza, Buenos Aires, Argentina
| | - Raquel Clara Jasan
- Departamento Química Nuclear, Gerencia Química Nuclear y Ciencias de la Salud (GAATN), Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica (CNEA), Av. Presbítero J. González y Aragón 15 (CP B1802AYA), Ezeiza, Buenos Aires, Argentina
| | - Mabel Beatriz Tudino
- INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., 00015, Rome, Italy
| | - Marcelo Enrique Conti
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, 00161, Rome, Italy
| |
Collapse
|
5
|
Di Fiore C, De Cristofaro A, Nuzzo A, Notardonato I, Ganassi S, Iafigliola L, Sardella G, Ciccone M, Nugnes D, Passarella S, Torino V, Petrarca S, Di Criscio D, Ievoli R, Avino P. Biomonitoring of polycyclic aromatic hydrocarbons, heavy metals, and plasticizers residues: role of bees and honey as bioindicators of environmental contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44234-44250. [PMID: 36683105 DOI: 10.1007/s11356-023-25339-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), heavy metals, and plasticizer residues are continuously released into the environment. The use of living organisms, such as Apis mellifera L. and honey, is advantageous as bioindicator of the environmental health status, instead of traditional monitoring methods, showing the ability to record spatial and temporal pollutant variations. The PAHs and heavy metal presence were determined in two sampling years (2017 and 2018) in five different locations in the Molise region (Italy), characterized by different pollution levels. During 2017, most PAHs in all samples were lower than limit of detection (LOD), while in 2018, their mean concentration in bee and honey samples was of 3 μg kg-1 and 35 μg kg-1, respectively. For heavy metals, lower values were detected in 2017 (Be, Cd, and V below LOD), while in 2018, the mean concentrations were higher, 138 μg kg-1 and 69 μg kg-1, in bees and honey, respectively. Honey has been used as indicator of the presence of phthalate esters and bisphenol A in the environment. The satisfactory results confirmed that both bees and honey are an important tool for environmental monitoring. The chemometric analysis highlighted the differences in terms of pollutant concentration and variability in the different areas, validating the suitability of these matrices as bioindicators.
Collapse
Affiliation(s)
- Cristina Di Fiore
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100, Campobasso, Italy
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100, Campobasso, Italy
| | - Angelo Nuzzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100, Campobasso, Italy
| | - Ivan Notardonato
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100, Campobasso, Italy
| | - Sonia Ganassi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100, Campobasso, Italy
| | - Luigi Iafigliola
- Istituto Comprensivo "Dante Alighieri", Via Marconi 19,-I-86025, Ripalimosani, Italy
| | | | | | - Davide Nugnes
- Arpa Molise, Via Petrella 1, 86100, Campobasso, Italy
| | - Sergio Passarella
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100, Campobasso, Italy
| | - Valentina Torino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100, Campobasso, Italy
| | - Sonia Petrarca
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100, Campobasso, Italy
| | - Dalila Di Criscio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100, Campobasso, Italy
| | - Riccardo Ievoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, Università Degli Studi Di Ferrara, Via Voltapaletto 11, 44121, Ferrara, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100, Campobasso, Italy.
| |
Collapse
|
6
|
Astolfi ML, Conti ME, Messi M, Marconi E. Probiotics as a promising prophylactic tool to reduce levels of toxic or potentially toxic elements in bees. CHEMOSPHERE 2022; 308:136261. [PMID: 36057357 DOI: 10.1016/j.chemosphere.2022.136261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Bees are precious living beings for our planet. Thanks to their essential service of pollination, these insects allow the maintenance of biodiversity and the variety and amount of food available. Unfortunately, we are observing an increasingly devastating reduction of bee families and other pollinating insects for factors related to human activities, environmental pollution, diseases and parasites, compromise of natural habitats, and climate change. We show that probiotics can protect bees from element pollution. We collected bees, beeswax, honey, pollen, and propolis directly from hives in a rural area of central Italy to investigate the content of 41 elements in control (not supplemented with probiotics) and experimental (supplemented with probiotics) groups. Our data show a significantly lower concentration of some elements (Ba, Be, Cd, Ce, Co, Cu, Pb, Sn, Tl, and U) in experimental bees than in control groups, indicating a possible beneficial effect of probiotics in reducing the absorption of chemicals. This study presents the first data on element levels after probiotics have been fed to bees and provides the basis for future research in several activities relating to the environment, agriculture, economy, territory, and medicine.
Collapse
Affiliation(s)
- Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy; CIABC, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Marcelo Enrique Conti
- Department of Management, Sapienza University of Rome, Via Del Castro Laurenziano 9, 00161 Rome, Italy
| | - Marcello Messi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Elisabetta Marconi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
7
|
Visconti S, Astolfi ML, Battistoni A, Ammendola S. Impairment of the Zn/Cd detoxification systems affects the ability of Salmonella to colonize Arabidopsis thaliana. Front Microbiol 2022; 13:975725. [PMID: 36071967 PMCID: PMC9441889 DOI: 10.3389/fmicb.2022.975725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
Salmonella capacity to colonize different environments depends on its ability to respond efficiently to fluctuations in micronutrient availability. Among micronutrients, Zn, besides playing an essential role in bacterial physiology, is a key element whose concentration can influence bacterial survival in a particular niche. Plant colonization by Salmonella enterica was described for several years, and some molecular determinants involved in this host-pathogen interaction have started to be characterized. However, it is still unclear if Zn plays a role in the outcome of this interaction, as well established for animal hosts that employ nutritional immunity strategies to counteract pathogens infections. In this study, we have investigated the involvement of Salmonella Typhimurium main effectors of zinc homeostasis in plant colonization, using Arabidopsis thaliana as a model host. The results show that to colonize plant tissues, Salmonella takes advantage of its ability to export excess metal through the efflux pumps ZntA and ZitB. In fact, the deletion of these Zn/Cd detoxification systems can affect bacterial persistence in the shoots, depending on metal availability in the plant tissues. The importance of Salmonella ability to export excess metal was enhanced in the colonization of plants grown in high Zn conditions. On the contrary, the bacterial disadvantage related to Zn detoxification impairment can be abrogated if the plant cannot efficiently translocate Zn to the shoots. Overall, our work highlights the role of Zn in Salmonella-plant interaction and suggests that modulation of plant metal content through biofortification may be an efficient strategy to control pathogen colonization.
Collapse
Affiliation(s)
- Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Serena Ammendola,
| |
Collapse
|
8
|
Conti ME, Astolfi ML, Finoia MG, Massimi L, Canepari S. Biomonitoring of element contamination in bees and beehive products in the Rome province (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36057-36074. [PMID: 35060025 DOI: 10.1007/s11356-021-18072-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED In this study, we determined the levels of elements (i.e. As, Be, Cd, Cr, Hg, Ni, Pb, U, and Zn) in bees and edible beehive products (honey, wax, pollen, and propolis) sampled from five selected sites in the Rome province (Italy). RATIONALE to increase the information variety endowment, the monitoring breakdown structure (MBS) conceptual model was used (nine elements, 429 samples, and approximately thirteen thousand determinations over a 1-year survey). Thus, we employed Johnson's probabilistic method to build the control charts. Then, we measured the element concentration overlap ranges and the overlap bioaccumulation index (OBI). Subsequently, we evaluated the estimated daily intake (EDI) of the analysed elements and matched them with acceptable reference doses. The human health risk caused by the intake of individual elements found in edible beehive products and their risk summation were evaluated through the target hazard quotient (THQ) and hazard index (HI) methods. FINDINGS excluding honey, this study confirms the capacity of wax, pollen, propolis, and bees to accumulate high levels of toxic and potentially toxic elements from the surrounding environment (with high OBI-U, i.e. OBI-Upper values, i.e. the common upper concentration limit of the overlap concentration range). Bees and pollen showed a high bioaccumulation Cd surplus (OBI-U = 44.0 and 22.3, respectively). On the contrary, honey had high OBI-L values (i.e. honey concentrates metals several times less than the common lower concentration limit of the overlap concentration range). This finding implies that honey is useless as an environmental indicator compared with the other biomonitor/indicators. The EDI values for the edible beehive products were lower than the health and safety reference doses for all the considered elements. Our data show that honey, wax, propolis, and pollen are safe for consumption by both adults and children (THQ < 1; HI < 1), even considering the sporadic possibility of consuming them simultaneously. ORIGINALITY This study has been conducted for the first time in the Rome province and demonstrates that edible indicators are safe for consumption for the considered elements in bees and edible beehive products. Depending on the ecosystem/pollutants studied, the OBI consents to make a correct choice for environmental biomonitoring studies and to focus the attention on the most sensitive biomonitors/indicators when required at the project level.
Collapse
Affiliation(s)
- Marcelo Enrique Conti
- Department of Management, University of Rome, Via del Castro Laurenziano 9, 00161, Sapienza, Italy.
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P. Le Aldo Moro, 00185, Rome, Italy
| | - Maria Grazia Finoia
- Italian National Institute for Environmental Protection and Research, Viale V. Brancati 60, 00166, Rome, Italy
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P. Le Aldo Moro, 00185, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P. Le Aldo Moro, 00185, Rome, Italy
| |
Collapse
|
9
|
Multi-Elemental Analysis as a Tool to Ascertain the Safety and the Origin of Beehive Products: Development, Validation, and Application of an ICP-MS Method on Four Unifloral Honeys Produced in Sardinia, Italy. Molecules 2022; 27:molecules27062009. [PMID: 35335374 PMCID: PMC8950479 DOI: 10.3390/molecules27062009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022] Open
Abstract
Despite unifloral honeys from Sardinia, Italy, being appreciated worldwide for their peculiar organoleptic features, their elemental signature has only partly been investigated. Hence, the principal aim of this study was to measure the concentration of trace and toxic elements (i.e., Ag, As, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Te, Tl, V, and Zn) in four unifloral honeys produced in Sardinia. For this purpose, an original ICP-MS method was developed, fully validated, and applied on unifloral honeys from asphodel, eucalyptus, strawberry tree, and thistle. Particular attention was paid to the method’s development: factorial design was applied for the optimization of the acid microwave digestion, whereas the instrumental parameters were tuned to minimize the polyatomic interferences. Most of the analytes’ concentration ranged between the relevant LoDs and few mg kg−1, while toxic elements were present in negligible amounts. The elemental signatures of asphodel and thistle honeys were measured for the first time, whereas those of eucalyptus and strawberry tree honeys suggested a geographical differentiation if compared with the literature. Chemometric analysis allowed for the botanical discrimination of honeys through their elemental signature, whereas linear discriminant analysis provided an accuracy level of 87.1%.
Collapse
|
10
|
Pavlova D, Atanassova J, Karadjova I, Bani A. Pollen and Chemical Content of Beebreads from Serpentine Areas in Albania and Bulgaria. Biol Trace Elem Res 2022; 200:413-425. [PMID: 33634363 DOI: 10.1007/s12011-021-02638-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
Beebread from serpentine localities in Albania and Bulgaria were characterized based on their pollen and chemical element content (macroelements K, Ca, Mg, P and microelements Cd, Co, Cr, Cu, Fe, Mn, Na, Ni, Pb, Zn) aiming to (1) evaluate the effect of serpentine soil on the quality of beebread; (2) compare elemental concentrations in samples from serpentine areas in Albania and Bulgaria; and (3) compare the differences in pollen spectra. Chemical element content was determined using microwave digestion of beebread samples followed by ICP-OES measurements. The analytical procedure developed was validated by added/found method. Analytical figures of merit of analytical method proposed were presented. The melissopalynological analysis was applied for pollen characterization. The results demonstrate clear difference in the pollen spectra between the two sets of samples, confirming differences in local serpentine flora in both countries, but specific pollen type is difficult to be suggested. The pollen content is related to the flowering period, climatic conditions, and bees forage preferences. The samples vary in their elemental concentrations depending on the pollen type and year of collection. The highest average concentrations found for K, Ca, Mg, and P are close to values reported in the literature. However, elevated concentrations observed for Ni, Cr, Mn, and Fe in beebread, especially from Albania, are in line with the serpentine characteristics of studied areas. The concentrations of Cd and Pb for all beebread samples are below permissible limits. The results should be taken into consideration in future specific food safety regulations at national and international level.
Collapse
Affiliation(s)
- Dolja Pavlova
- Department of Botany, Faculty of Biology, University of Sofia, blvd. Dragan Tzankov 8, 1164, Sofia, Bulgaria.
| | - Juliana Atanassova
- Department of Botany, Faculty of Biology, University of Sofia, blvd. Dragan Tzankov 8, 1164, Sofia, Bulgaria
| | - Irina Karadjova
- Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, blvd. James Bouchier 1, 1164, Sofia, Bulgaria
| | - Aida Bani
- Environmental Department, Faculty of Agronomy and Environment, Agricultural University of Tirana, Koder-Kamez, Tirane, Albania
| |
Collapse
|
11
|
Astolfi ML, Marini F, Frezzini MA, Massimi L, Capriotti AL, Montone CM, Canepari S. Multielement Characterization and Antioxidant Activity of Italian Extra-Virgin Olive Oils. Front Chem 2021; 9:769620. [PMID: 34869215 PMCID: PMC8635196 DOI: 10.3389/fchem.2021.769620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Food product safety and quality are closely related to the elemental composition of food. This study combined multielement analysis and chemometric tools to characterize 237 extra-virgin olive oil (EVOO) samples from 15 regions of Italy, and to verify the possibility of discriminating them according to different quality factors, such as varietal or geographical origin or whether they were organically or traditionally produced. Some elements have antioxidant properties, while others are toxic to humans or can promote oxidative degradation of EVOO samples. In particular, the antioxidant activity of oils’ hydrophilic fraction was estimated and the concentrations of 45 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). At first, univariate and multivariate analyses of variance were used to compare the element concentrations, and statistically significant differences were found among samples from different regions. Successively, discriminant classification approaches were used to build a model for EVOO authentication, considering, in turn, various possible categorizations. The results have indicated that chemometric methods coupled with ICP-MS have the potential to discriminate and characterize the different types of EVOO, and to provide “typical” elemental fingerprints of the various categories of samples.
Collapse
Affiliation(s)
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | | | | | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Galiński B, Luboch E, Chojnacki J, Wagner-Wysiecka E. Novel Diazocrowns with Pyrrole Residue as Lead(II)Colorimetric Probes. MATERIALS 2021; 14:ma14237239. [PMID: 34885394 PMCID: PMC8658487 DOI: 10.3390/ma14237239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
Novel 18- and 23-membered diazomacrocycles were obtained with satisfactory yields by diazocoupling of aromatic diamines with pyrrole in reactions carried under high dilution conditions. X-ray structure of macrocycle bearing five carbon atoms linkage was determined and described. Compounds were characterized as chromogenic heavy metal ions receptors. Selective color and spectral response for lead(II) was found in acetonitrile and its mixture with water. Complexation properties of newly obtained macrocycles with a hydrocarbon chain were compared with the properties of their oligoether analogs. The influence of the introduction of hydrocarbon residue as a part of macrocycle on the lead(II) binding was discussed. Selective and sensitive colorimetric probe for lead(II) in aqueous acetonitrile with detection limit 56.1 μg/L was proposed.
Collapse
Affiliation(s)
- Błażej Galiński
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; (B.G.); (E.L.)
| | - Elżbieta Luboch
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; (B.G.); (E.L.)
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland;
| | - Ewa Wagner-Wysiecka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; (B.G.); (E.L.)
- Correspondence:
| |
Collapse
|
13
|
Sadowska M, Hyk W, Ruszczyńska A, Roszak A, Mycka A, Krasnodębska-Ostręga B. Statistical evaluation of the effect of sample preparation procedure on the results of determinations of selected elements in environmental samples. Honey bees as a case study. CHEMOSPHERE 2021; 279:130572. [PMID: 33866099 DOI: 10.1016/j.chemosphere.2021.130572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Honey bees became a frequently studied environmental research object due to the fact that they are considered as indicators of the environmental contamination with metals. Such studies require reliable methods of sample preparation that allow comparison of the results obtained in different laboratories. In this paper, different variants of sample preparation were examined, including washing, milling and mineralization. Determination of total contents of Cd, Pb, Co, Cr, Cu, and Zn was performed using ICP MS. Each procedure of the sample preparation was characterized in terms of repeatability and recovery and the resulting combined standard uncertainty was evaluated. The relative UNC ranges for the treatment procedures examined are: 11-16% (washing, open digestion), 13-14% (open digestion), 13-51% (washing, closed digestion), 12-37% (washing, milling, closed digestion), 13-68% (closed digestion), and 12-51% (milling, closed digestion). In almost all cases the lower limits of these ranges correspond to Zn determinations while the upper limits to Pb. Analytical results of metal determination obtained for samples prepared according to six different procedures do not differ significantly when compared within the expanded uncertainty (±2×u(c¯M)). The procedures were compared statistically using one-factor analysis of variance (ANOVA) and chemometrically on the basis of Principal Component Analysis (PCA), which allowed to demonstrate some general recommendations regarding environmental monitoring for matrices other than honey bees.
Collapse
Affiliation(s)
- Monika Sadowska
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warszawa, Poland.
| | - Wojciech Hyk
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warszawa, Poland; Biological and Chemical Research Centre, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warszawa, Poland.
| | - Anna Ruszczyńska
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warszawa, Poland; Biological and Chemical Research Centre, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warszawa, Poland.
| | - Aleksandra Roszak
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warszawa, Poland.
| | - Anna Mycka
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warszawa, Poland.
| | | |
Collapse
|
14
|
Reusable Water Bottles: Release of Inorganic Elements, Phthalates, and Bisphenol A in a “Real Use” Simulation Experiment. SEPARATIONS 2021. [DOI: 10.3390/separations8080126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reusable water bottles are growing in popularity; thus, possible chemical release from the internal surface into water should be carefully considered to control related health risks. We experimentally evaluated the release into deionized water of 40 elements, six phthalates, and bisphenol-A for 20 different reusable bottles by simulating the use in real world scenario. The 20 bottles, identified as those most purchased in Italy, were made of various materials (stainless steel, aluminum, plastic, and silicone). The experiment was carried out for four consecutive weeks in duplicate for each type of bottle. Our results showed the release, to various extents, of inorganic elements from all 20 bottles, while the release of phthalates and bisphenol-A was never found. The elements most frequently released were Al, Sr, Mo, and Cr, while the highest concentrations were for Ca, K, Mg, and Na; the release of toxic elements (such as Pb, Cd, Ni, Sb) also occurred. The comparison of our results with regulatory limits on drinking water quality revealed no exceeding values except for Al. However, these releases represent a further intake, and the related risks cannot be neglected, especially for highly susceptible populations. Thus, it is essential to correctly inform consumers both with dedicated interventions and exhaustive labelling.
Collapse
|
15
|
Astolfi ML, Conti ME, Ristorini M, Frezzini MA, Papi M, Massimi L, Canepari S. An Analytical Method for the Biomonitoring of Mercury in Bees and Beehive Products by Cold Vapor Atomic Fluorescence Spectrometry. Molecules 2021; 26:molecules26164878. [PMID: 34443466 PMCID: PMC8399589 DOI: 10.3390/molecules26164878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Bees and their products are useful bioindicators of anthropogenic activities and could overcome the deficiencies of air quality networks. Among the environmental contaminants, mercury (Hg) is a toxic metal that can accumulate in living organisms. The first aim of this study was to develop a simple analytical method to determine Hg in small mass samples of bees and beehive products by cold vapor atomic fluorescence spectrometry. The proposed method was optimized for about 0.02 g bee, pollen, propolis, and royal jelly, 0.05 g beeswax and honey, or 0.1 g honeydew with 0.5 mL HCl, 0.2 mL HNO3, and 0.1 mL H2O2 in a water bath (95 °C, 30 min); samples were made up to a final volume of 5 mL deionized water. The method limits sample manipulation and the reagent mixture volume used. Detection limits were lower than 3 µg kg−1 for a sample mass of 0.02 g, and recoveries and precision were within 20% of the expected value and less than 10%, respectively, for many matrices. The second aim of the present study was to evaluate the proposed method’s performances on real samples collected in six areas of the Lazio region in Italy.
Collapse
Affiliation(s)
- Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: ; Tel./Fax: +39-06-4991-3384
| | - Marcelo Enrique Conti
- Department of Management, Sapienza University of Rome, via del Castro Laurenziano 9, 00161 Rome, Italy;
| | - Martina Ristorini
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy;
| | - Maria Agostina Frezzini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.A.F.); (L.M.); (S.C.)
| | - Marco Papi
- Association of Beekeepers of Rome and Province, via Albidona 20, 00118 Rome, Italy;
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.A.F.); (L.M.); (S.C.)
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.A.F.); (L.M.); (S.C.)
| |
Collapse
|
16
|
Soós Á, Bódi É, Várallyay S, Molnár S, Kovács B. Microwave-assisted sample preparation of Hungarian raw propolis in quartz vessels and element analysis by ICP-OES and ICP-MS for geographical identification. Talanta 2021; 233:122613. [PMID: 34215096 DOI: 10.1016/j.talanta.2021.122613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
One of the aims of this study was to improve the sample throughput of a microwave-assisted closed vessel digestion system by using small quartz vials in polytetrafluoroethylene (PTFE) vessels for the sample preparation of raw propolis samples in small amounts. The digested samples were measured by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) analyzing 36 elements. Limit of detection was low enough to measure all the elements, with the exception of La, in all raw propolis samples. There were no cross-contamination between the quartz vials, therefore independent samples can be prepared in the same PTFE vessel. Accuracy of the method was checked by spike recoveries and by analyzing BCR 189 wholemeal flour and two plant samples from a collaborative study. The means of RSDs were 5.3%-14.4% in the case of measured elements. The sample throughput was increased by three times using quartz vials in PFTE vessels besides matching with the requirements of green chemistry. Another goal was the characterization of the element content and thereby geographical identification of Hungarian raw propolis. In total, 252 samples were analyzed and their statistical characteristics were described. We cannot find globally such results of propolis element content, which is representing one country and with such a number of elements and samples. All the elements have positive skew and positive kurtosis. Concentration range is above two orders of magnitude in the case of Ba, Zn, V, Cr, Ni, Cd and Eu elements. The decimal logarithm of element concentrations was used for geographical identification of raw propolis samples originating from seven regions of Hungary by linear discriminant analysis (LDA). Grouping of the samples of the Northern Great Plain was the most effective with 96.3% and 77.8% based on the original method and the cross validation, respectively. The same indicators for all the groups are 76.6% and 61.5%.
Collapse
Affiliation(s)
- Áron Soós
- Institute of Food Science, University of Debrecen, Böszörményi Str. 138, H-4032, Debrecen, Hungary.
| | - Éva Bódi
- Institute of Food Science, University of Debrecen, Böszörményi Str. 138, H-4032, Debrecen, Hungary
| | - Szilvia Várallyay
- Institute of Food Science, University of Debrecen, Böszörményi Str. 138, H-4032, Debrecen, Hungary
| | - Szabolcs Molnár
- Food and Wine Research Centre, Eszterházy Károly University, Leányka Str. 6., H-3300, Eger, Hungary
| | - Béla Kovács
- Institute of Food Science, University of Debrecen, Böszörményi Str. 138, H-4032, Debrecen, Hungary
| |
Collapse
|
17
|
Matuszewska E, Klupczynska A, Maciołek K, Kokot ZJ, Matysiak J. Multielemental Analysis of Bee Pollen, Propolis, and Royal Jelly Collected in West-Central Poland. Molecules 2021; 26:2415. [PMID: 33919229 PMCID: PMC8122449 DOI: 10.3390/molecules26092415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Beehive products possess nutritional value and health-promoting properties and are recommended as so-called "superfoods". However, because of their natural origin, they may contain relevant elemental contaminants. Therefore, to assess the quality of bee products, we examined concentrations of a broad range of 24 selected elements in propolis, bee pollen, and royal jelly. The quantitative analyses were performed with inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The results of our research indicate that bee products contain essential macronutrients (i.e., K, P, and S) and micronutrients (i.e., Zn and Fe) in concentrations depending on the products' type. However, the presence of toxic heavy metals makes it necessary to test the quality of bee products before using them as dietary supplements. Bearing in mind that bee products are highly heterogenous and, depending on the environmental factors, differ in their elemental content, it is necessary to develop standards regulating the acceptable levels of inorganic pollutants. Furthermore, since bees and their products are considered to be an effective biomonitoring tool, our results may reflect the environment's condition in west-central Poland, affecting the health and well-being of both humans and bees.
Collapse
Affiliation(s)
- Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznań, Poland; (E.M.); (A.K.)
| | - Agnieszka Klupczynska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznań, Poland; (E.M.); (A.K.)
| | | | - Zenon J. Kokot
- Faculty of Health Sciences, Calisia University, 13 Street, 62-800 Kalisz, Poland;
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznań, Poland; (E.M.); (A.K.)
| |
Collapse
|
18
|
Monchanin C, Blanc-Brude A, Drujont E, Negahi MM, Pasquaretta C, Silvestre J, Baqué D, Elger A, Barron AB, Devaud JM, Lihoreau M. Chronic exposure to trace lead impairs honey bee learning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112008. [PMID: 33578129 DOI: 10.1016/j.ecoenv.2021.112008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Pollutants can have severe detrimental effects on insects, even at sublethal doses, damaging developmental and cognitive processes involved in crucial behaviours. Agrochemicals have been identified as important causes of pollinator declines, but the impacts of other anthropogenic compounds, such as metallic trace elements in soils and waters, have received considerably less attention. Here, we exposed colonies of the European honey bee Apis mellifera to chronic field-realistic concentrations of lead in food and demonstrated that consumption of this trace element impaired bee cognition and morphological development. Honey bees exposed to the highest of these low concentrations had reduced olfactory learning performances. These honey bees also developed smaller heads, which may have constrained their cognitive functions as we show a general relationship between head size and learning performance. Our results demonstrate that lead pollutants, even at trace levels, can have dramatic effects on honey bee cognitive abilities, potentially altering key colony functions and the pollination service.
Collapse
Affiliation(s)
- Coline Monchanin
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France; Department of Biological Sciences, Macquarie University, NSW, Australia.
| | - Amaury Blanc-Brude
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Erwann Drujont
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Mohammed Mustafa Negahi
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Jérôme Silvestre
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - David Baqué
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Arnaud Elger
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France.
| |
Collapse
|