1
|
Ye L, Huang Y, Zhang L, Li X, Zhang B, Yang X, Luo J, Liu H, Zhang X, Song C, Ao Z, Shen C, Tan W, Li X. Structural characterization and antioxidant activity evaluation of a polysaccharide from pink Auricularia cornea. Int J Biol Macromol 2025; 284:138149. [PMID: 39613087 DOI: 10.1016/j.ijbiomac.2024.138149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
An acidic polysaccharose (YL-D2N2) was isolated from crude polysaccharides of pink Auricularia cornea and characterized for its structural and antioxidant properties. YL-D2N2 consists of fucose, galactose, glucose, xylose, mannose and glucuronic acid in a molar ratio of 0.85: 1.50: 4.44: 27.52: 46.56: 19.13. It has a number-average molecular weight of about 52.811 kDa and a weight-average molecular weight of about 135.457 kDa. Structural characterization showed that YL-D2N2 consists of nine residues (Xylp-(1→, GlcpA-(1→, →2)-Xylp-(1→, →3)-Galp-(1→, →3)-Manp-(1→, →4)-GlcpA-(1→, →2,3)-Manp-(1→, →3,4)-Glcp-(1→, →3,6)-Manp-(1→), with a backbone of →3)-β-D-Manp-(1→, →2,3)-α-D-Manp-(1→, →3,6)-α-D-Manp-(1 → and side chains containing β-D-Xylp-(1 → and α-D-GlcpA-(1→. Notably, YL-D2N2 exhibits significant radical scavenging activity for superoxide anions, reaching 50.82 ± 0.64 % at a concentration of 3.2 mg/mL. Overall, YL-D2N2 exhibits a unique chemical structure and specialized applications for targeting superoxide anion radicals, providing valuable insights for further exploration of its structure-activity relationship.
Collapse
Affiliation(s)
- Lei Ye
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Jianhua Luo
- Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Hongping Liu
- Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Xiaoping Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Chuan Song
- Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | - Zonghua Ao
- Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | | | - Wei Tan
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China; Luzhou Laojiao Co., Ltd, Luzhou 646000, China.
| |
Collapse
|
2
|
Li H, Liu Z, Liu Q, Zhang X, Li S, Tang F, Zhang L, Yang Q, Wang Q, Yang S, Huang L, Ba Y, Du X, Yang F, Feng H. Extraction of Polysaccharides from Root of Pseudostellaria heterophylla (Miq.) Pax. and the Effects of Ultrasound Treatment on Its Properties and Antioxidant and Immune Activities. Molecules 2023; 29:142. [PMID: 38202725 PMCID: PMC10779800 DOI: 10.3390/molecules29010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The hydrophilic polysaccharides (PS) were isolated and purified from the tuberous roots of Pseudostellaria heterophylla. The extraction process of PS from Pesudostellariae radix was optimized by single-factor experiments and orthogonal design. The extract was purified by DEAE cellulose column to obtain the pure polysaccharide PHP. Then PHP was treated with different intensities of sonication to study the effect of sonication on PHP's characteristics and its biological activity in vitro and in vivo. The results of this study revealed that ultrasound treatment did not significantly change the properties of PHP. Further, with the increase of ultrasound intensity, PHP enhanced the proliferation and phagocytosis of macrophage RAW264.7. Meanwhile, it could also significantly improve the body's antioxidant activity and immune function. The results of this study demonstrated that PHP has the potential as a food additive with enhanced antioxidant and immune functions, and its biological activities could be enhanced by sonication.
Collapse
Affiliation(s)
- Hangyu Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Ziwei Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Xinnan Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Sheng Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Feng Tang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Linzi Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qian Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qiran Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Shuyao Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Ling Huang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Yuwei Ba
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Xihui Du
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Falong Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| |
Collapse
|
3
|
Chen CC, Nargotra P, Kuo CH, Liu YC. High-Molecular-Weight Exopolysaccharides Production from Tuber brochii Cultivated by Submerged Fermentation. Int J Mol Sci 2023; 24:ijms24054875. [PMID: 36902305 PMCID: PMC10002917 DOI: 10.3390/ijms24054875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Truffles are known worldwide for their peculiar taste, aroma, and nutritious properties, which increase their economic value. However, due to the challenges associated with the natural cultivation of truffles, including cost and time, submerged fermentation has turned out to be a potential alternative. Therefore, in the current study, the cultivation of Tuber borchii in submerged fermentation was executed to enhance the production of mycelial biomass, exopolysaccharides (EPSs), and intracellular polysaccharides (IPSs). The mycelial growth and EPS and IPS production was greatly impacted by the choice and concentration of the screened carbon and nitrogen sources. The results showed that sucrose (80 g/L) and yeast extract (20 g/L) yielded maximum mycelial biomass (5.38 ± 0.01 g/L), EPS (0.70 ± 0.02 g/L), and IPS (1.76 ± 0.01 g/L). The time course analysis of truffle growth revealed that the highest growth and EPS and IPS production was observed on the 28th day of the submerged fermentation. Molecular weight analysis performed by the gel permeation chromatography method revealed a high proportion of high-molecular-weight EPS when 20 g/L yeast extract was used as media and the NaOH extraction step was carried out. Moreover, structural analysis of the EPS using Fourier-transform infrared spectroscopy (FTIR) confirmed that the EPS was β-(1-3)-glucan, which is known for its biomedical properties, including anti-cancer and anti-microbial activities. To the best of our knowledge, this study represents the first FTIR analysis for the structural characterization of β-(1-3)-glucan (EPS) produced from Tuber borchii grown in submerged fermentation.
Collapse
Affiliation(s)
- Cheng-Chun Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Correspondence: (C.-H.K.); (Y.-C.L.); Tel.: +886-7-3617141 (ext. 23646) (C.-H.K.); +886-4-22853769 (Y.-C.L.)
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-H.K.); (Y.-C.L.); Tel.: +886-7-3617141 (ext. 23646) (C.-H.K.); +886-4-22853769 (Y.-C.L.)
| |
Collapse
|
4
|
Guan T, Wei X, Xu P, Chen K, Zou Y, Chen M, Zhu Z. Comparison of structural and antioxidant activity of polysaccharide extracted from truffles. J Food Sci 2022; 87:2999-3012. [PMID: 35674229 DOI: 10.1111/1750-3841.16207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
As the main component of truffles, polysaccharides have a variety of biological activities such as anti-oxidation, anti-tumor, and hypoglycemic activity, and these activities are closely related to its structure. In this study, Tuber Aestivum crude polysaccharide (TACP) and Tuber Melanosporum crude polysaccharide (TMCP) were obtained from Tuber Aestivum and Tuber Melanosporum by using microwave-assisted hot water, and then the Sephadex G-200 column was utilized to further separate and purify Tuber Aestivum polysaccharide (TAP) and Tuber Melanosporum polysaccharide (TMP) from TACP and TMCP. The structural characterization results showed that the molecular weight of TAP was 2.18 × 104 kDa, while TMP was 8.79 × 103 kDa. Although the two polysaccharide components were mainly composed of mannose (Man) and glucose (Glc), the molar ratio of Man and Glc in TAP was 14.76: 12.31, with a molar ratio of 5.43:10.94 in TMP. Furthermore, the antioxidant activity of two polysaccharide components was evaluated. TAP and TMP could protect porcine jejunal epithelial (IPEC-J2) cells from oxidative damage by H2 O2 , but TAP exhibited stronger antioxidant effects. It was mainly reflected that TAP could increase the secretion level of intracellular antioxidant enzymes (superoxide dismutase and catalase) in IPEC-J2 cells, and had a significant effect on the total antioxidant capacity of cells. The reactive oxygen species and malondialdehyde had better scavenging ability at the concentration of 20 µg/ml. The difference between TAP and TMP may be due to the dissimilar structure. Its structure-activity relationship needs further study. PRACTICAL APPLICATION: The structure of TAP and TMP were different, and TAP had higher molecular weight. Besides, TAP and TMP can protect IPEC-J2 cells from oxidative stress, providing a theoretical basis for developing potential antioxidant drugs of practical significance.
Collapse
Affiliation(s)
- Tongwei Guan
- School of Food and Biological Engineering, Xihua University, Chengdu, P. R. China
| | - Xinyue Wei
- School of Food and Biological Engineering, Xihua University, Chengdu, P. R. China
| | - Pei Xu
- School of Food and Biological Engineering, Xihua University, Chengdu, P. R. China
| | - Kebao Chen
- School of Food and Biological Engineering, Xihua University, Chengdu, P. R. China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Mengsi Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhenyuan Zhu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|