1
|
Dong Q, Yan S, Li D, Zhou C, Tian S, Wang Y, Miao P, Zhu W, Zhu S, Pan C. Feeding foliar nano-selenium biofortified panax notoginseng could reduce the occurrence of glycolipid metabolism disorder in mice caused by high-fat diets. Front Nutr 2022; 9:973027. [PMID: 36091251 PMCID: PMC9450130 DOI: 10.3389/fnut.2022.973027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Nano-selenium (nano-Se) has been extensively explored as a biostimulant for improving the quality of grain crops. However, there are few reports about the effect on the medicinal components of Chinese herbal medicine cultured with nano-Se. Here, we sprayed nano-Se during the cultivation of Panax notoginseng (SePN), and measured the changes of medicinal components compared with conventional Panax notoginseng (PN). Furthermore, we identified a more pronounced effect of SePN on reducing obesity in animals compared with PN. By measuring antioxidant capacity, histopathology, gene expression related to glycolipid metabolism, and gut microbiota composition, we propose a potential mechanism for SePN to improve animal health. Compared with the control groups, foliar spraying of nano-Se increased saponins contents (Rb2, Rb3, Rc, F2, Rb2, and Rf) in the roots of Panax notoginseng, the content of Rb2 increased by 3.9 times particularly. Interestingly, animal studies indicated that taking selenium-rich Panax notoginseng (SePN) can further ameliorate liver antioxidation (SOD, MDA, and GSH) and enzyme activities involved in glycolipid metabolism (ATGL and PFK). It also relieved inflammation and regulated the expression of genes (MCAD, PPAR-α, and PCSK9) related to fatty acid oxidation. The abundance ratio of Firmicutes/Bacteroides and beneficial bacteria abundance (Bifidobacterium, Butyricimonas, and Parasutterella) in gut microbiota were improved relative to the control. In summary, the application of nano-Se on PN may effectively raise the content of Panax notoginseng saponins (PNS) and immensely lower the risk of metabolic disorders of glycolipids.
Collapse
Affiliation(s)
- Qinyong Dong
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Sen Yan
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Dong Li
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Chunran Zhou
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Sinuo Tian
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Yu Wang
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Peijuan Miao
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Wentao Zhu
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, Yunnan Agricultural University, Kunming, China
| | - Canping Pan
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
- *Correspondence: Canping Pan
| |
Collapse
|
2
|
Mattar P, Toledo-Valenzuela L, Hernández-Cáceres MP, Peña-Oyarzún D, Morselli E, Perez-Leighton C. Integrating the effects of sucrose intake on the brain and white adipose tissue: Could autophagy be a possible link? Obesity (Silver Spring) 2022; 30:1143-1155. [PMID: 35578809 DOI: 10.1002/oby.23411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
Abstract
Excess dietary sucrose is associated with obesity and metabolic diseases. This relationship is driven by the malfunction of several cell types and tissues critical for the regulation of energy balance, including hypothalamic neurons and white adipose tissue (WAT). However, the mechanisms behind these effects of dietary sucrose are still unclear and might be independent of increased adiposity. Accumulating evidence has indicated that dysregulation of autophagy, a fundamental process for maintenance of cellular homeostasis, alters energy metabolism in hypothalamic neurons and WAT, but whether autophagy could mediate the detrimental effects of dietary sucrose on hypothalamic neurons and WAT that contribute to weight gain is a matter of debate. In this review, we examine the hypothesis that dysregulated autophagy in hypothalamic neurons and WAT is an adiposity-independent effect of sucrose that contributes to increased body weight gain. We propose that excess dietary sucrose leads to autophagy unbalance in hypothalamic neurons and WAT, which increases caloric intake and body weight, favoring the emergence of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Pamela Mattar
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Daniel Peña-Oyarzún
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua, School of Medicine, Faculty of Medicine, San Felipe Campus, University of Valparaiso, Valparaíso, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Zhou HR, Wang TX, Hao YY, Hou YL, Wei C, Yao B, Wu X, Huang D, Zhang H, Wu YL. Jinlida Granules Reduce Obesity in db/db Mice by Activating Beige Adipocytes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4483009. [PMID: 35647185 PMCID: PMC9135524 DOI: 10.1155/2022/4483009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Recent studies indicate existence of beige adipocytes in adults. Upon activation, beige adipocytes burn energy for thermogenesis and contribute to regulation of energy balance. In this study, we have analyzed whether Jinlida granules (JLD) could activate beige adipocytes. JLD suspended in 0.5% carboxymethyl cellulose (CMC) was gavage fed to db/db mice at a daily dose of 3.8 g/kg. After 10 weeks, body weight, biochemical, and histological analyses were performed. In situ hybridization, immunofluorescence, and western blotting were conducted to test beige adipocyte activation in mice. X9 cells were induced with induction medium and maintenance medium containing 400 μg/mL of JLD. After completion of induction, cells were analyzed by Nile red staining, time polymerase chain reaction (PCR), western blotting, and immunofluorescence to understand the effect of JLD on the activation of beige adipocytes. A molecular docking method was used to preliminarily identify compounds in JLD, which hold the potential activation effect on uncoupling protein 1 (UCP1). JLD treatment significantly improved obesity in db/db mice. Biochemical results showed that JLD reduced blood glucose (GLU), triglyceride (TG), and low-density lipoprotein cholesterol (LDL) levels as well as liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in mice. Hematoxylin and eosin staining (H&E) showed that JLD reduced hepatocyte ballooning changes in the liver. Immunofluorescence showed that JLD increased the expression of the thermogenic protein, UCP1, in the beige adipose tissue of mice. JLD also increased the expression of UCP1 and inhibited the expression of miR-27a in X9 cells. Molecular docking results showed that epmedin B, epmedin C, icariin, puerarin, and salvianolic acid B had potential activation effects on UCP1. The results suggest that JLD may activate beige adipocytes by inhibiting miR-27a expression, thereby promoting thermogenesis in beige adipocytes. This study provides a new pharmacological basis for the clinical use of JLD.
Collapse
Affiliation(s)
- Hong-ru Zhou
- Hebei Medical University, No. 361 Zhongshan Road, Chang'an District, Shijiazhuang, Hebei Province, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Tong-xing Wang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Yuan-yuan Hao
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yun-long Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Bing Yao
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Xuan Wu
- Hebei Medical University, No. 361 Zhongshan Road, Chang'an District, Shijiazhuang, Hebei Province, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Dan Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hui Zhang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Yi-ling Wu
- Hebei Medical University, No. 361 Zhongshan Road, Chang'an District, Shijiazhuang, Hebei Province, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| |
Collapse
|
4
|
Kattapuram N, Zhang C, Muyyarikkandy MS, Surugihalli C, Muralidaran V, Gregory T, Sunny NE. Dietary Macronutrient Composition Differentially Modulates the Remodeling of Mitochondrial Oxidative Metabolism during NAFLD. Metabolites 2021; 11:metabo11050272. [PMID: 33926132 PMCID: PMC8147090 DOI: 10.3390/metabo11050272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Diets rich in fats and carbohydrates aggravate non-alcoholic fatty liver disease (NAFLD), of which mitochondrial dysfunction is a central feature. It is not clear whether a high-carbohydrate driven ‘lipogenic’ diet differentially affects mitochondrial oxidative remodeling compared to a high-fat driven ‘oxidative’ environment. We hypothesized that the high-fat driven ‘oxidative’ environment will chronically sustain mitochondrial oxidative function, hastening metabolic dysfunction during NAFLD. Mice (C57BL/6NJ) were reared on a low-fat (LF; 10% fat calories), high-fat (HF; 60% fat calories), or high-fructose/high-fat (HFr/HF; 25% fat and 34.9% fructose calories) diet for 10 weeks. De novo lipogenesis was determined by measuring the incorporation of deuterium from D2O into newly synthesized liver lipids using nuclear magnetic resonance (NMR) spectroscopy. Hepatic mitochondrial metabolism was profiled under fed and fasted states by the incubation of isolated mitochondria with [13C3]pyruvate, targeted metabolomics of tricarboxylic acid (TCA) cycle intermediates, estimates of oxidative phosphorylation (OXPHOS), and hepatic gene and protein expression. De novo lipogenesis was higher in the HFr/HF mice compared to their HF counterparts. Contrary to our expectations, hepatic oxidative function after fasting was induced in the HFr/HF group. This differential induction of mitochondrial oxidative function by the high fructose-driven ‘lipogenic’ environment could influence the progressive severity of hepatic insulin resistance.
Collapse
|