1
|
Machalska E, Halat M, Tani T, Fujisawa T, Unno M, Kudelski A, Baranska M, Zając G. Why Does One Measure Resonance Raman Optical Activity? A Unique Case of Measurements under Strong Resonance versus Far-from-Resonance Conditions. J Phys Chem Lett 2024; 15:4913-4919. [PMID: 38684076 PMCID: PMC11089565 DOI: 10.1021/acs.jpclett.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Raman optical activity (ROA) spectroscopy exhibits significant potential in the study of (bio)molecules as it encodes information on their molecular structure, chirality, and conformations. Furthermore, the method reveals details on excited electronic states when applied under resonance conditions. Here, we present a combined study of the far from resonance (FFR)-ROA and resonance ROA (RROA) of a single relatively small molecular system. Notably, this study is the first to employ the density functional theory (DFT) analysis of both FFR-ROA and RROA spectra. This is illustrated for cobalamin derivatives using near-infrared and visible light excitation. Although the commonly observed monosignate RROA spectra lose additional information visible in bisignate nonresonance ROA spectra, the RROA technique acts as a complement to nonresonance ROA spectroscopy. In particular, the combination of these methods integrated with DFT calculations can reveal a complete spectral picture of the structural and conformational differences between tested compounds.
Collapse
Affiliation(s)
- Ewa Machalska
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
- Laboratory
for Spectroscopy, Molecular Modeling and Structure Determination, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Monika Halat
- Department
of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Takumi Tani
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Tomotsumi Fujisawa
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masashi Unno
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Andrzej Kudelski
- Faculty of
Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Malgorzata Baranska
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
- Faculty of
Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| |
Collapse
|
2
|
Porębska D, Orzeł Ł, Rutkowska-Żbik D, Stochel G, van Eldik R. Synthesis and characterization of cyanocobalamin conjugates with Pt(II) complexes towards potential therapeutic applications. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Zając G, Bouř P. Measurement and Theory of Resonance Raman Optical Activity for Gases, Liquids, and Aggregates. What It Tells about Molecules. J Phys Chem B 2021; 126:355-367. [PMID: 34792364 DOI: 10.1021/acs.jpcb.1c08370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resonance Raman Optical Activity (RROA) appeared as a natural extension of the nonresonance branch. It combines the structural sensitivity of chiroptical spectroscopy with the signal enhancement coming from the resonance of molecular electronic transitions with the excitation laser light. However, the idea has been hampered by many technical and theoretical problems that are being clarified only in recent years. We provide the theoretical basis and several examples documenting the problems, achievements, and potential of RROA, in particular in biomolecular studies.
Collapse
Affiliation(s)
- Grzegorz Zając
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague, 16610, Czech Republic
| |
Collapse
|
4
|
Machalska E, Zajac G, Wierzba AJ, Kapitán J, Andruniów T, Spiegel M, Gryko D, Bouř P, Baranska M. Recognition of the True and False Resonance Raman Optical Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ewa Machalska
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Bobrzynskiego 14 30-348 Krakow Poland
| | - Grzegorz Zajac
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Bobrzynskiego 14 30-348 Krakow Poland
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Aleksandra J. Wierzba
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Josef Kapitán
- Department of Optics Palacký University Olomouc 17. listopadu 12 77146 Olomouc Czech Republic
| | - Tadeusz Andruniów
- Department of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicine Wroclaw Medical University Borowska 211A 50-556 Wroclaw Poland
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Malgorzata Baranska
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Bobrzynskiego 14 30-348 Krakow Poland
| |
Collapse
|
5
|
Machalska E, Zajac G, Wierzba AJ, Kapitán J, Andruniów T, Spiegel M, Gryko D, Bouř P, Baranska M. Recognition of the True and False Resonance Raman Optical Activity. Angew Chem Int Ed Engl 2021; 60:21205-21210. [PMID: 34216087 PMCID: PMC8519086 DOI: 10.1002/anie.202107600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Resonance Raman optical activity (RROA) possesses all aspects of a sensitive tool for molecular detection, but its measurement remains challenging. We demonstrate that reliable recording of RROA of chiral colorful compounds is possible, but only after considering the effect of the electronic circular dichroism (ECD) on the ROA spectra induced by the dissolved chiral compound. We show RROA for a number of model vitamin B12 derivatives that are chemically similar but exhibit distinctively different spectroscopic behavior. The ECD/ROA effect is proportional to the concentration and dependent on the optical pathlength of the light propagating through the sample. It can severely alter relative band intensities and signs in the natural RROA spectra. The spectra analyses are supported by computational modeling based on density functional theory. Neglecting the ECD effect during ROA measurement can lead to misinterpretation of the recorded spectra and erroneous conclusions about the molecular structure.
Collapse
Affiliation(s)
- Ewa Machalska
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityBobrzynskiego 1430-348KrakowPoland
| | - Grzegorz Zajac
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityBobrzynskiego 1430-348KrakowPoland
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Aleksandra J. Wierzba
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Josef Kapitán
- Department of OpticsPalacký University Olomouc17. listopadu 1277146OlomoucCzech Republic
| | - Tadeusz Andruniów
- Department of ChemistryWroclaw University of Science and TechnologyWyb. Wyspianskiego 2750-370WroclawPoland
| | - Maciej Spiegel
- Department of Pharmacognosy and Herbal MedicineWroclaw Medical UniversityBorowska 211A50-556WroclawPoland
| | - Dorota Gryko
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Petr Bouř
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Malgorzata Baranska
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityBobrzynskiego 1430-348KrakowPoland
| |
Collapse
|
6
|
Porębska D, Orzeł Ł, Rutkowska-Zbik D, Stochel G, van Eldik R. Ligand-Tuning of the Stability of Pd(II) Conjugates with Cyanocobalamin. Int J Mol Sci 2021; 22:ijms22157973. [PMID: 34360738 PMCID: PMC8347314 DOI: 10.3390/ijms22157973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Besides the well-known functions performed by vitamin B12 (CblCN) in biochemical processes of the human body, an increasing interest has been raised by the possibility of its use as a transmembrane drug carrier, capable, among others, of enhancing the accumulation of inorganic cytostatics in cancer cells. The present study was aimed at determining the possibility of the formation of CblCN conjugates with Pd(II) complexes. A key aspect was their stability, which we attempted to tune by appropriate choice of ligands. Syntheses, spectroscopic analysis of postreaction systems and kinetic investigations of conjugate formation reactions, have been complemented by DFT modelling. The obtained results showed that ligand charge, geometry and electron affinity may have a significant impact on carrier binding and release leading to the activation of the Pd(II) complex. This provides a rationale to expect that with appropriate composition of the coordination sphere, it will be possible to extend the spectrum of less toxic inorganic chemotherapeutics.
Collapse
Affiliation(s)
- Dominika Porębska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (D.P.); (G.S.)
| | - Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (D.P.); (G.S.)
- Correspondence: (Ł.O.); (R.v.E.); Tel.: +48-126862486 (Ł.O.); +48-667772932 (R.v.E.)
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (D.P.); (G.S.)
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (D.P.); (G.S.)
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg, Egerlandstr 1, 91058 Erlangen, Germany
- Correspondence: (Ł.O.); (R.v.E.); Tel.: +48-126862486 (Ł.O.); +48-667772932 (R.v.E.)
| |
Collapse
|