1
|
Singleton S, Dieterle C, Walker DJ, Runeberg T, Oswald AS, Rosenqvist G, Robertson L, McCarthy T, Sarkar S, Baptista-Hon D, Hales TG. Activation of μ receptors by SR-17018 through a distinctive mechanism. Neuropharmacology 2024; 258:110093. [PMID: 39067665 DOI: 10.1016/j.neuropharm.2024.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Agonists at μ opioid receptors relieve acute pain, however, their long-term use is limited by side effects, which may involve β-arrestin2. Agonists biased against β-arrestin2 recruitment may be advantageous. However, the classification of bias may be compromised by assays utilising overexpressed μ receptors which overestimate efficacy for G-protein activation. There is a need for re-evaluation with restricted receptor availability to determine accurate agonist efficacies. We depleted μ receptor availability in PathHunter CHO cells using the irreversible antagonist, β-funaltrexamine (β-FNA), and compared efficacies and apparent potencies of twelve agonists, including several previously reported as biased, in β-arrestin2 recruitment and cAMP assays. With full receptor availability all agonists had partial efficacy for stimulating β-arrestin2 recruitment relative to DAMGO, while only TRV130 and buprenorphine were partial agonists as inhibitors of cAMP accumulation. Limiting receptor availability by prior exposure to β-FNA (100 nM) revealed morphine, oxycodone, PZM21, herkinorin, U47700, tianeptine and U47931e are also partial agonists in the cAMP assay. The efficacies of all agonists, except SR-17018, correlated between β-arrestin2 recruitment and cAMP assays, with depleted receptor availability in the latter. Furthermore, naloxone and cyprodime exhibited non-competitive antagonism of SR-17018 in the β-arrestin2 recruitment assay. Limited antagonism by naloxone was also non-competitive in the cAMP assay, while cyprodime was competitive. Furthermore, SR-17018 only negligibly diminished β-arrestin2 recruitment stimulated by DAMGO (1 μM), whereas fentanyl, morphine and TRV130 all exhibited the anticipated competitive inhibition. The data suggest that SR-17018 achieves bias against β-arrestin2 recruitment through interactions with μ receptors outside the orthosteric agonist site. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Samuel Singleton
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Clara Dieterle
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - David J Walker
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Tyko Runeberg
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Andrew S Oswald
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Greta Rosenqvist
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Laura Robertson
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Taylor McCarthy
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Shuvam Sarkar
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Daniel Baptista-Hon
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK; Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Tim G Hales
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
2
|
Rullo L, Morosini C, Lacorte A, Cristani M, Coluzzi F, Candeletti S, Romualdi P. Opioid system and related ligands: from the past to future perspectives. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:70. [PMID: 39390585 PMCID: PMC11468104 DOI: 10.1186/s44158-024-00201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
Chronic pain is a pathological condition affecting about 30% of population. It represents a relevant social-health issue worldwide, and it is considered a significant source of human suffering and disability, strongly affecting patients' quality of life. Despite several pharmacological strategies to guarantee an adequate pain management have been proposed over the years, opioids still represent one of the primary choices for treating moderate-to-severe pain in both cancer and non-cancer patients. However, chronic use of opioids often leads to numerous side effects, including respiratory depression, constipation, analgesic tolerance, and opioid-induced hyperalgesia (OIH), which can strongly limit their use. Given the fundamental role of opioid system in pain relief, this review provides a general overview about the main actors (endogenous opioid peptides and receptors) involved in its modulation. Furthermore, this review explores the action and the limitations of conventional clinically used opioids and describes the efficacy and safety profile of some promising analgesic compounds. A deeper understanding of the molecular mechanisms behind both analgesic effects and adverse events could advance knowledge in this field, thus improving chronic pain treatment.
Collapse
Affiliation(s)
- Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Antonio Lacorte
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Marco Cristani
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Flaminia Coluzzi
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy.
| |
Collapse
|
3
|
Cukic M, Annaheim S, Bahrami F, Defraeye T, De Nys K, Jörger M. Is personal physiology-based rapid prediction digital twin for minimal effective fentanyl dose better than standard practice: a pilot study protocol. BMJ Open 2024; 14:e085296. [PMID: 39317494 PMCID: PMC11423737 DOI: 10.1136/bmjopen-2024-085296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
INTRODUCTION Patients with advanced cancer frequently suffer from chronic, severe disabling pain. Opioids such as morphine and fentanyl are commonly used to manage this pain. Transdermal drug delivery systems are important technologies for administering drugs in a non-invasive, continuous and controlled manner. Due to the narrow therapeutic range of fentanyl, individualised dosing is essential to avoid underdosing or overdosing. Standard clinical calculation tools for opioid rotation however do not include important patient characteristics that account for interindividual variability of opioid pharmacology. METHODS AND ANALYSIS We developed a clinical protocol to optimise individual fentanyl dosing in patients with advanced cancer switching from oral or intravenous opioids to transdermal fentanyl by using a physics-based digital twin (DT) that is fed by important clinical and physiological parameters. Individual tailoring of transdermal fentanyl therapy is an approach with the potential for personalised and effective care with an improved benefit-risk ratio. However, clinical validation of physics-based digital twins (PBDT) dosing is crucial to proving clinical benefit.Therapeutic drug monitoring will allow to validate the accuracy of PBDT predictions. Additional monitoring for breathing dynamics, sequential pain levels and fentanyl-related adverse events will contribute to evaluating the performance of PBDT-based dosing of transdermal fentanyl. The primary objective of the study is to develop an experimental protocol to validate DT-guided fentanyl dosing in patients with advanced cancer. This clinical study will bring individualised opioid dosing closer to clinical practice. ETHICS AND DISSEMINATION Study documents have been approved by the responsible Ethics Committee and study initiation is planned for late summer 2024. Data will be shared with the scientific community no more than 1 year following completion of the study and data assembly.
Collapse
Affiliation(s)
- Milena Cukic
- Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Labs for Materials Science and Technology, St. Gallen, Switzerland
| | - Simon Annaheim
- Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Labs for Materials Science and Technology, St. Gallen, Switzerland
| | - Flora Bahrami
- Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Labs for Materials Science and Technology, St. Gallen, Switzerland
- ARTOG, University of Bern, Bern, Switzerland
| | - Thijs Defraeye
- Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Labs for Materials Science and Technology, St. Gallen, Switzerland
| | - Katelijne De Nys
- Palliative Care Department, Kantonal Hospital St. Gallen (KSSG), St. Gallen, Switzerland
| | - Markus Jörger
- Oncology, Kantonsspital St Gallen, St. Gallen, Switzerland
| |
Collapse
|
4
|
Alananzeh WA, Al-Qattan MN, Ayipo YO, Mordi MN. N-substituted tetrahydro-beta-carboline as mu-opioid receptors ligands: in silico study; molecular docking, ADMET and molecular dynamics approach. Mol Divers 2024; 28:1273-1289. [PMID: 37133710 DOI: 10.1007/s11030-023-10655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Manipulating intracellular signals by interaction with transmembranal G-protein-coupled receptors (GPCRs) is the way of action of more than 30% of available medicines. Designing molecules against GPCRs is most challenging due to their flexible binding orthosteric and allosteric pockets, a property that lead to different mode and extent of activation of intracellular mediators. Here, in the current study we aimed to design N-substituted tetrahydro-beta-carbolines (THβC's) targeting Mu Opioid Receptors (MORs). We performed ligand docking study for reference and designed compounds against active and inactive states of MOR, as well as the active state bound to intracellular mediator of Gi. The reference compounds include 40 known agonists and antagonists, while the designed compounds include 25,227 N-substituted THβC analogues. Out of the designed compounds, 15 compounds were comparatively having better extra precision (XP) Gscore and were analyzed for absorption, distribution, metabolism, and excretion-toxicity (ADMET) properties, drug-likness, and molecular dynamic (MD) simulation. The results showed that N-substituted tetrahydro-beta-carbolines with and without C6-methoxy group substitutions (THBC/6MTHBC) analogues of A1/B1 and A9/B9 have relatively acceptable affinity and within pocket-stability toward MOR compared to the reference compounds of morphine (agonist) and naloxone (antagonist). Moreover, the designed analogues interact with key residue within the binding pocket of Asp 147 that is reported to be involved in receptor activation. In conclusion, the designed THBC analogues represent a good starting point for designing opioid receptor ligands other than morphinan scaffold, that have good synthetic accessibility which promotes feasible structural manipulation to tailor pharmacological effects with minimal side effects.
Collapse
Affiliation(s)
- Waleed A Alananzeh
- Center for Drug Research, Universiti Sains Malaysia, 11800, George Town, Pulau Penang, Malaysia.
| | - Mohammed N Al-Qattan
- College of Pharmacy, Knowledge University, Erbīl, Iraq
- College of Pharmacy, Nineveh University, Mosul, Iraq
| | - Yusuf Oloruntoyin Ayipo
- Center for Drug Research, Universiti Sains Malaysia, 11800, George Town, Pulau Penang, Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University, Ilorin, Nigeria
| | - Mohd N Mordi
- Center for Drug Research, Universiti Sains Malaysia, 11800, George Town, Pulau Penang, Malaysia
| |
Collapse
|
5
|
Bahrami F, Rossi RM, De Nys K, Joerger M, Radenkovic MC, Defraeye T. Implementing physics-based digital patient twins to tailor the switch of oral morphine to transdermal fentanyl patches based on patient physiology. Eur J Pharm Sci 2024; 195:106727. [PMID: 38360153 DOI: 10.1016/j.ejps.2024.106727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Fentanyl transdermal patches are widely implemented for cancer-induced pain treatment due to the high potency of fentanyl and gradual drug release. However, transdermal fentanyl up-titration for opioid-naïve patients is difficult, which is why opioid treatment is often started with oral/iv morphine. Based on the daily dose of morphine, the initial dose of the fentanyl patch is decided upon. After reaching a stable level of pain, the switch is made from oral/iv morphine to transdermal fentanyl. There are standard calculation tools for transferring from oral/iv morphine to transdermal fentanyl, which is the same for all patients. By considering the variations in the physiology of the patients, a unique switching strategy cannot meet the needs of different patients. This study explores the outcome in terms of pain relief and minute ventilation during opioid therapy. For this, we used physics-based simulations on a virtually-generated population of patients, and we applied the same therapy to all patients. We could show that patients' physiology, such as gender, age, and weight, greatly impact the outcome of the therapy; as such, the correlation coefficient between pain intensity and age is 0.89, and the correlation coefficient between patient's weight and maximum plasma concentration of morphine and fentanyl is -0.98 and -0.97. Additionally, a different combination of the duration of overlap between morphine and fentanyl therapy with different doses of fentanyl was considered for the virtual patients to find the best opioid-switching strategy for each patient. We explored the impact of combining physiological features to determine the best-suited strategy for virtual patients. Our findings suggest that tailoring morphine and fentanyl therapy only based on a limited number of features is insufficient, and increasing the number of impactful physiological features positively influences the outcome of the therapy.
Collapse
Affiliation(s)
- Flora Bahrami
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland; ARTORG Center for Biomedical Engineering Research, University of Bern, Mittelstrasse 43, Bern CH-3012, Switzerland
| | - René Michel Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
| | - Katelijne De Nys
- Kantonsspital St. Gallen, Palliativzentrum, Rorschacherstrasse 95, St. Gallen CH-9000, Switzerland; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, ON2 Herestraat 49 - box 424, Leuven BE-3000, Belgium
| | - Markus Joerger
- Kantonsspital St. Gallen, Medizinische Onkologie und Hämatologie, Rorschacherstrasse 95, St. Gallen CH-9000, Switzerland
| | - Milena Cukic Radenkovic
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
| | - Thijs Defraeye
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland.
| |
Collapse
|
6
|
Ramos‐Gonzalez N, Groom S, Sutcliffe KJ, Bancroft S, Bailey CP, Sessions RB, Henderson G, Kelly E. Carfentanil is a β-arrestin-biased agonist at the μ opioid receptor. Br J Pharmacol 2023; 180:2341-2360. [PMID: 37005796 PMCID: PMC10952505 DOI: 10.1111/bph.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The illicit use of fentanyl-like drugs (fentanyls), which are μ opioid receptor agonists, and the many overdose deaths that result, has become a major problem. Fentanyls are very potent in vivo, leading to respiratory depression and death. However, the efficacy and possible signalling bias of different fentanyls is not clearly known. Here, we compared the relative efficacy and bias of a series of fentanyls. EXPERIMENTAL APPROACH For agonist signalling bias and efficacy measurements, Bioluminescence Resonance Energy Transfer experiments were undertaken in HEK293T cells transiently transfected with μ opioid receptors, to assess Gi protein activation and β-arrestin 2 recruitment. Agonist-induced cell surface receptor loss was assessed using an enzyme-linked immunosorbent assay, whilst agonist-induced G protein-coupled inwardly rectifying potassium channel current activation was measured electrophysiologically from rat locus coeruleus slices. Ligand poses in the μ opioid receptor were determined in silico using molecular dynamics simulations. KEY RESULTS Relative to the reference ligand DAMGO, carfentanil was β-arrestin-biased, whereas fentanyl, sufentanil and alfentanil did not display bias. Carfentanil induced potent and extensive cell surface receptor loss, whilst the marked desensitisation of G protein-coupled inwardly rectifying potassium channel currents in the continued presence of carfentanil in neurones was prevented by a GRK2/3 inhibitor. Molecular dynamics simulations suggested unique interactions of carfentanil with the orthosteric site of the receptor that could underlie the bias. CONCLUSIONS AND IMPLICATIONS Carfentanil is a β-arrestin-biased opioid drug at the μ receptor. It is uncertain how such bias influences in vivo effects of carfentanil relative to other fentanyls.
Collapse
Affiliation(s)
| | - Sam Groom
- Department of Pharmacy and PharmacologyUniversity of BathBathUK
| | - Katy J. Sutcliffe
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Sukhvinder Bancroft
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Chris P. Bailey
- Department of Pharmacy and PharmacologyUniversity of BathBathUK
| | | | - Graeme Henderson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Eamonn Kelly
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
7
|
de Lima MRP, Bezerra RFS, Serafim DDB, Sena Junior DM. Dynamics of the Apo µ-Opioid Receptor in Complex with Gi Protein. Int J Mol Sci 2023; 24:13430. [PMID: 37686252 PMCID: PMC10487971 DOI: 10.3390/ijms241713430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Opioid receptors, particularly the µ-opioid receptor (μOR), play a pivotal role in mediating the analgesic and addictive effects of opioid drugs. G protein signaling is an important pathway of μOR function, usually associated with painkilling effects. However, the molecular mechanisms underlying the interaction between the μOR and G protein remain poorly understood. In this study, we employed classical all-atom molecular dynamics simulations to investigate the structural changes occurring with the μOR-G protein complex under two different conditions: with the G protein in the apo form (open) and with the GDP bound G protein (closed, holo form). The receptor was in the apo form and active conformation in both cases, and the simulation time comprised 1µs for each system. In order to assess the effect of the G protein coupling on the receptor activation state, three parameters were monitored: the correlation of the distance between TM3 and TM6 and the RMSD of the NPxxYA motif; the universal activation index (A100); and the χ2 dihedral distribution of residue W2936.48. When complexed with the open G protein, receptor conformations with intermediate activation state prevailed throughout the molecular dynamics, whereas in the condition with the closed G protein, mostly inactive conformations of the receptor were observed. The major effect of the G protein in the receptor conformation comes from a steric hindrance involving an intracellular loop of the receptor and a β-sheet region of the G protein. This suggests that G-protein precoupling is essential for receptor activation, but this fact is not sufficient for complete receptor activation.
Collapse
Affiliation(s)
- Mira Raya Paula de Lima
- Biological Chemistry Department, Universidade Regional do Cariri—URCA, Crato 63105-000, CE, Brazil; (R.F.S.B.); (D.D.B.S.)
- Instituto Federal de Educação Ciência e Tecnologia do Ceará—IFCE, Juazeiro do Norte 63040-540, CE, Brazil
| | - Rubem Francisco Silva Bezerra
- Biological Chemistry Department, Universidade Regional do Cariri—URCA, Crato 63105-000, CE, Brazil; (R.F.S.B.); (D.D.B.S.)
| | - David Denis Bento Serafim
- Biological Chemistry Department, Universidade Regional do Cariri—URCA, Crato 63105-000, CE, Brazil; (R.F.S.B.); (D.D.B.S.)
| | - Diniz Maciel Sena Junior
- Biological Chemistry Department, Universidade Regional do Cariri—URCA, Crato 63105-000, CE, Brazil; (R.F.S.B.); (D.D.B.S.)
| |
Collapse
|
8
|
Li Z, Liu J, Dong F, Chang N, Huang R, Xia M, Patterson TA, Hong H. Three-Dimensional Structural Insights Have Revealed the Distinct Binding Interactions of Agonists, Partial Agonists, and Antagonists with the µ Opioid Receptor. Int J Mol Sci 2023; 24:ijms24087042. [PMID: 37108204 PMCID: PMC10138646 DOI: 10.3390/ijms24087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The United States is experiencing the most profound and devastating opioid crisis in history, with the number of deaths involving opioids, including prescription and illegal opioids, continuing to climb over the past two decades. This severe public health issue is difficult to combat as opioids remain a crucial treatment for pain, and at the same time, they are also highly addictive. Opioids act on the opioid receptor, which in turn activates its downstream signaling pathway that eventually leads to an analgesic effect. Among the four types of opioid receptors, the µ subtype is primarily responsible for the analgesic cascade. This review describes available 3D structures of the µ opioid receptor in the protein data bank and provides structural insights for the binding of agonists and antagonists to the receptor. Comparative analysis on the atomic details of the binding site in these structures was conducted and distinct binding interactions for agonists, partial agonists, and antagonists were observed. The findings in this article deepen our understanding of the ligand binding activity and shed some light on the development of novel opioid analgesics which may improve the risk benefit balance of existing opioids.
Collapse
Affiliation(s)
- Zoe Li
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jie Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fan Dong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Nancy Chang
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
9
|
Kelly E, Sutcliffe K, Cavallo D, Ramos-Gonzalez N, Alhosan N, Henderson G. The anomalous pharmacology of fentanyl. Br J Pharmacol 2023; 180:797-812. [PMID: 34030211 DOI: 10.1111/bph.15573] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
Fentanyl is a key therapeutic, used in anaesthesia and pain management. It is also increasingly used illicitly and is responsible for a large and growing number of opioid overdose deaths, especially in North America. A number of factors have been suggested to contribute to fentanyl's lethality, including rapid onset of action, in vivo potency, ligand bias, induction of muscle rigidity and reduced sensitivity to reversal by naloxone. Some of these factors can be considered to represent 'anomalous' pharmacological properties of fentanyl when compared with prototypical opioid agonists such as morphine. In this review, we examine the nature of fentanyl's 'anomalous' properties, to determine whether there is really a pharmacological basis to support the existence of such properties, and also discuss whether such properties are likely to contribute to overdose deaths involving fentanyls. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Katy Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Damiana Cavallo
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | - Norah Alhosan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Xie B, Le Rouzic VP, Goldberg A, Tsai MHM, Chen L, Zhang T, Sinha A, Pan YX, Baumann MH, Shi L. Binding preference at the μ-opioid receptor underlies distinct pharmacology of cyclopropyl versus valeryl analogs of fentanyl. Neuropharmacology 2023; 227:109442. [PMID: 36731721 PMCID: PMC9974845 DOI: 10.1016/j.neuropharm.2023.109442] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Illicitly manufactured fentanyl is driving the current opioid crisis, and various fentanyl analogs are appearing in recreational drug markets worldwide. To assess the potential health risks posed by fentanyl analogs, it is necessary to understand structure-activity relationships for these compounds. Here we compared the pharmacology of two structurally related fentanyl analogs implicated in opioid overdose: cyclopropylfentanyl and valerylfentanyl. Cyclopropylfentanyl has a three-carbon ring attached to the carbonyl group on the fentanyl scaffold, whereas valerylfentanyl has a four-carbon chain at the same position. In vitro assays examining μ-opioid receptor (MOR) coupling to G proteins in CHO cells showed that cyclopropylfentanyl is a full agonist (EC50 = 8.6 nM, %Emax = 113%), with potency and efficacy similar to fentanyl (EC50 = 10.3 nM, %Emax = 113%). By contrast, valerylfentanyl is a partial agonist at MOR (EC50 = 179.8 nM, %Emax = 60%). Similar results were found in assays assessing MOR-mediated β-arrestin recruitment in HEK cells. In vivo studies in male CD-1 mice demonstrated that both fentanyl analogs induce naloxone-reversible antinociception and respiratory suppression, but cyclopropylfentanyl is 100-times more potent as an antinociceptive agent (ED50 = 0.04 mg/kg, s. c.) than valerylfentanyl (ED50 = 4.0 mg/kg, s. c.). Molecular simulation results revealed that the alkyl chain of valerylfentanyl cannot be well accommodated by the active state of MOR and may transition the receptor toward an inactive state, converting the fentanyl scaffold to a partial agonist. Taken together, our results suggest that cyclopropylfentanyl presents much greater risk of adverse effects when compared to valerylfentanyl. Moreover, the summed findings may provide clues to the design of therapeutic opioids with reduced adverse side effects.
Collapse
Affiliation(s)
- Bing Xie
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Valerie P Le Rouzic
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexander Goldberg
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Meng-Hua M Tsai
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Tiffany Zhang
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Antara Sinha
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Ying-Xian Pan
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA; Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
11
|
Marques da Fonseca A, Freire da Silva A, Barbosa da Silva FL, Caluaco BJ, Gaieta EM, Nunes da Rocha M, Colares RP, Sobczak JF, Marinho GS, Dos Santos HS, Marinho ES. Isolation, characterization and in silico study of propenamide alkaloids from Hymenoepmecis bicolor poison against active μ-opioid receptor. J Biomol Struct Dyn 2023; 41:14621-14637. [PMID: 36815273 DOI: 10.1080/07391102.2023.2183043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Some insects produce venoms to defend against predators and directly interact with opioid receptors. In the present study, it was identified two alkaloids in the wasp venom species Hymenoepimecis bicolor. It was demonstrated that these could act as potential inhibitors of opioid receptors through their robust affinity to the receptors. The interaction profile was given to opioid receptors (μOR), with 60% of targets similar to alkaloid 1, with 0.25 probability, and 46.7% of targets similar to alkaloid 2, with a probability 0.17 of affinity as a target, which is considered signaling macromolecules and can mediate the most potent analgesic and addictive properties of opiate alkaloids. Notably, both alkaloids showed -7.6 kcal/mol affinity to the morphine agonies through six residues, Gly124, Asp147, Trp293, Ile296, Ile322, and Tyr326. These observations suggest further research on opioid receptors using in vitro studies of possible therapeutic applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aluísio Marques da Fonseca
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Ananias Freire da Silva
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Redenção, CE, Brazil
| | - Francisco Lennon Barbosa da Silva
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Redenção, CE, Brazil
| | - Bernardino Joaquim Caluaco
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Eduardo Menezes Gaieta
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Matheus Nunes da Rocha
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Regilany Paulo Colares
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Jober Fernando Sobczak
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Gabrielle Silva Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| |
Collapse
|
12
|
Vliet SMF, Hazemi M, Blatz D, Jensen M, Mayasich S, Transue TR, Simmons C, Wilkinson A, LaLone CA. Demonstration of the Sequence Alignment to Predict Across Species Susceptibility Tool for Rapid Assessment of Protein Conservation. J Vis Exp 2023:10.3791/63970. [PMID: 36847398 PMCID: PMC10758989 DOI: 10.3791/63970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool is a fast, freely available, online screening application that allows researchers and regulators to extrapolate toxicity information across species. For biological targets in model systems such as human cells, mice, rats, and zebrafish, toxicity data are available for a variety of chemicals. Through the evaluation of protein target conservation, this tool can be used to extrapolate data generated from such model systems to thousands of other species lacking toxicity data, yielding predictions of relative intrinsic chemical susceptibility. The latest releases of the tool (versions 2.0-6.1) have incorporated new features that allow for the rapid synthesis, interpretation, and use of the data for publication plus presentation-quality graphics. Among these features are customizable data visualizations and a comprehensive summary report designed to summarize SeqAPASS data for ease of interpretation. This paper describes the protocol to guide users through submitting jobs, navigating the various levels of protein sequence comparisons, and interpreting and displaying the resulting data. New features of SeqAPASS v2.0-6.0 are highlighted. Furthermore, two use-cases focused on transthyretin and opioid receptor protein conservation using this tool are described. Finally, SeqAPASS' strengths and limitations are discussed to define the domain of applicability for the tool and highlight different applications for cross-species extrapolation.
Collapse
Affiliation(s)
- Sara M F Vliet
- Office of Research and Development, Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, U.S. Environmental Protection Agency;
| | | | | | - Marissa Jensen
- Swenson College of Science and Engineering, Department of Biology, University of Minnesota Duluth
| | | | | | - Cody Simmons
- General Dynamics Information Technology, Research Triangle Park
| | | | - Carlie A LaLone
- Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency
| |
Collapse
|
13
|
Kelly E, Conibear A, Henderson G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol 2023; 63:491-515. [PMID: 36170657 DOI: 10.1146/annurev-pharmtox-052120-091058] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein- over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| |
Collapse
|
14
|
Zádor F, Király K, Essmat N, Al-Khrasani M. Recent Molecular Insights into Agonist-specific Binding to the Mu-Opioid Receptor. Front Mol Biosci 2022; 9:900547. [PMID: 35769909 PMCID: PMC9234319 DOI: 10.3389/fmolb.2022.900547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Opioid agonists produce their analgesic effects primarily by acting at the µ-opioid receptor (µOR). µOR agonists with different efficacies exert diverse molecular changes in the µOR which dictate the faith of the receptor’s signaling pathway and possibly it’s the degree of desensitization. Since the development of the active conformations of the µOR, growing data have been published in relation to ligand-specific changes in µOR activation. In this regard, this review summarizes recent data regarding the most studied opioid agonists in in silico µOR activation, including how these ligands are recognized by the µOR, how their binding signal is transmitted toward the intracellular parts of the µOR, and finally, what type of large-scale movements do these changes trigger in the µOR’s domains.
Collapse
Affiliation(s)
- Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- *Correspondence: Ferenc Zádor,
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
16
|
Xie B, Goldberg A, Shi L. A comprehensive evaluation of the potential binding poses of fentanyl and its analogs at the µ-opioid receptor. Comput Struct Biotechnol J 2022; 20:2309-2321. [PMID: 35615021 PMCID: PMC9123087 DOI: 10.1016/j.csbj.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
Fentanyl and its analogs are selective agonists of the µ-opioid receptor (MOR). Among novel synthetic opioids (NSOs), they dominate the recreational drug market and are the main culprits for the opioid crisis, which has been exacerbated by the COVID-19 pandemic. By taking advantage of the crystal structures of the MOR, several groups have investigated the binding mechanism of fentanyl, but have not reached a consensus, in terms of both the binding orientation and the fentanyl conformation. Thus, the binding mechanism of fentanyl at the MOR remains an unsolved and challenging question. Here, we carried out a systematic computational study to investigate the preferred fentanyl conformations, and how these conformations are being accommodated in the MOR binding pocket. We characterized the free energy landscape of fentanyl conformations with metadynamics simulations, and compared and evaluated several possible fentanyl binding conditions in the MOR with long-timescale molecular dynamics simulations. Our results indicate that the most preferred binding pose in the MOR binding pocket corresponds well with the global minimum on the energy landscape of fentanyl in the absence of the receptor, while the energy landscape can be reconfigured by modifying the fentanyl scaffold. The interactions with the receptor may stabilize a slightly unfavored fentanyl conformation in an alternative binding pose. By extending similar investigations to fentanyl analogs, our findings establish a structure–activity relationship of fentanyl binding at the MOR. In addition to providing a structural basis to understand the potential toxicity of the emerging NSOs, such insights will contribute to developing new, safer analgesics.
Collapse
|
17
|
G protein signaling-biased mu opioid receptor agonists that produce sustained G protein activation are noncompetitive agonists. Proc Natl Acad Sci U S A 2021; 118:2102178118. [PMID: 34819362 DOI: 10.1073/pnas.2102178118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
The ability of a ligand to preferentially promote engagement of one signaling pathway over another downstream of GPCR activation has been referred to as signaling bias, functional selectivity, and biased agonism. The presentation of ligand bias reflects selectivity between active states of the receptor, which may result in the display of preferential engagement with one signaling pathway over another. In this study, we provide evidence that the G protein-biased mu opioid receptor (MOR) agonists SR-17018 and SR-14968 stabilize the MOR in a wash-resistant yet antagonist-reversible G protein-signaling state. Furthermore, we demonstrate that these structurally related biased agonists are noncompetitive for radiolabeled MOR antagonist binding, and while they stimulate G protein signaling in mouse brains, partial agonists of this class do not compete with full agonist activation. Importantly, opioid antagonists can readily reverse their effects in vivo. Given that chronic treatment with SR-17018 does not lead to tolerance in several mouse pain models, this feature may be desirable for the development of long-lasting opioid analgesics that remain sensitive to antagonist reversal of respiratory suppression.
Collapse
|
18
|
Stahl EL, Bohn LM. Low Intrinsic Efficacy Alone Cannot Explain the Improved Side Effect Profiles of New Opioid Agonists. Biochemistry 2021; 61:1923-1935. [PMID: 34468132 DOI: 10.1021/acs.biochem.1c00466] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In a recent report in Science Signaling (Gillis, A., et al. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signaling 2020, 13, eaaz3140 10.1126/scisignal.aaz3140), it was suggested that low intrinsic agonism, and not biased agonism, leads to an improvement in the separation of potency in opioid-induced respiratory suppression versus antinociception. Although many of the compounds that were tested have been shown to display G protein signaling bias in prior publications, the authors conclude that because they cannot detect biased agonism in their cellular signaling studies the compounds are therefore not biased agonists. Rather, they conclude that it is low intrinsic efficacy that leads to the therapeutic window improvement. Intrinsic efficacy is the extent to which an agonist can stimulate a G protein-coupled receptor response in a system, while biased agonism takes into consideration not only the intrinsic efficacy but also the potency of an agonist in an assay. Herein, we have reanalyzed the data presented in the published work (10.1126/scisignal.aaz3140) [including the recent Erratum (10.1126/scisignal.abf9803)] to derive intrinsic efficacy and bias factors as ΔΔlog(τ/KA) and ΔΔlog(Emax/EC50), respectively. On the basis of this reanalysis, the data support the conclusion that biased agonism, favoring G protein signaling, was observed. Moreover, a conservation of rank order intrinsic efficacy was not observed upon comparing responses in each assay, further suggesting that multiple active receptor states were present. These observations agree with prior studies in which oliceridine, PZM21, and SR-17018 were first described as biased agonists with improvement in antinociception over respiratory suppression in mice. Therefore, the data in the Science Signaling paper provide strong corroborating evidence that G protein signaling bias may be a means of improving opioid analgesia while avoiding certain undesirable side effects.
Collapse
Affiliation(s)
- Edward L Stahl
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Laura M Bohn
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
19
|
Spetea M, Schmidhammer H. Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery. Molecules 2020; 25:E5658. [PMID: 33271753 PMCID: PMC7730540 DOI: 10.3390/molecules25235658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
The interest in opioids such as morphine, the prototypical opioid ligand, has been maintained throughout the years [...].
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | | |
Collapse
|