1
|
Zhang Z, Jiang JC, Feng ZY, Jin B, Liu Y, Meng LY. ACFs-NH 2 developed for dispersive solid phase extraction combined with Py-GC/MS for nanoplastic analysis in ambient water samples. J Chromatogr A 2024; 1736:465382. [PMID: 39341169 DOI: 10.1016/j.chroma.2024.465382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Accurate determination of nanoplastics (NPs) in aquatic ecosystems constitutes a challenge for which highly sensitive analytical methods are necessitated. Herein, a sample pretreatment based on self-made amino-functionalized activated carbon fibers (ACFs-NH2) dispersive solid-phase extraction (DSPE) allows for high-recovery, followed by high-sensitivity detection of NPs by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The developed methodology allowed low detection limits (20-100 μg/L) to be achieved quickly in a few steps. Under optimal conditions, ACFs-NH2 (12.5 mg) was able to recover ≥98.45 % of polystyrene (PS) nanoplastics at high concentration (100 mg/L) in 10 mL seawater. Based on the high adsorption performance of materials, the adsorption dynamics and isotherms were determined to infer the interaction mechanism of PSNPs on ACFs-NH2. After adsorption, the target on the surface of the adsorbent can be directly pyrolyzed, which can simplify the operation steps and avoid the elution of organic solvents, making the process more environmentally friendly. This strategy is feasible for the analysis of trace NPs in water systems.
Collapse
Affiliation(s)
- Zixuan Zhang
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji 133002, PR China
| | - Jin-Chi Jiang
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji 133002, PR China
| | - Zhi-Yuan Feng
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji 133002, PR China
| | - Biao Jin
- Instrumental Analysis Center, Yanbian University, Park Road 977, Yanji 133002, PR China.
| | - Yingdan Liu
- Center for Advanced Structural Materials, State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China.
| | - Long-Yue Meng
- Department of Environmental Science, Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, PR China.
| |
Collapse
|
2
|
Pang M, Xu J, Tang Y, Guo Y, Ding H, Wang R, Zhang T, Zhang G, Guo X, Dai G, Xie X, Xie K. Combining GC-MS/MS with a LLE-SPE sample pretreatment step to simultaneously analyse enrofloxacin and ofloxacin residues in chicken tissues and pork. Food Chem 2024; 456:139972. [PMID: 38852445 DOI: 10.1016/j.foodchem.2024.139972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
A widely applicable original gas chromatography-tandem mass spectrometry (GC-MS/MS) method was explored to qualitatively and quantitatively measure enrofloxacin and ofloxacin residues in chicken tissues and pork. The experimental samples were processed based on liquid-liquid extraction (LLE) and solid-phase extraction (SPE). Trimethylsilyl diazomethane (TMSD) was chosen to react derivatively with enrofloxacin and ofloxacin. In total, 78.25% ∼ 90.56% enrofloxacin and 78.43% ∼ 91.86% ofloxacin was recovered from the blank fortified samples. The limits of detection (LODs) were 0.7-1.0 μg/kg and 0.1-0.2 μg/kg, respectively. The limits of quantitation (LOQs) were 1.6-1.9 μg/kg and 0.3-0.4 μg/kg, respectively. It was verified that various experimental data met the requirements of the FAO & WHO (2014) for the detection of veterinary drug residues. Real samples obtained from local markets were analysed using the established method, and no residues of enrofloxacin or ofloxacin were detected in the samples.
Collapse
Affiliation(s)
- Maoda Pang
- Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu, Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Junjie Xu
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Yayun Tang
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Yawen Guo
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Hao Ding
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Ran Wang
- Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu, Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Tao Zhang
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Genxi Zhang
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaodong Guo
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Guojun Dai
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Xing Xie
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu, Academy of Agricultural Sciences, Nanjing 210014, PR China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, PR China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
3
|
Yari A, Salemzadeh M. Removal and measurement of trace amounts of rhodamine B in aqueous samples based on the synthesis of a nanosorbent composed of Fe 3O 4 nanoparticles modified with SiO 2 and polydopamine by magnetic solid phase extraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39392716 DOI: 10.1039/d4ay01537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Rhodamine B (RDB) dye is generally toxic and causes problems such as carcinogenic activities, neurological disorders, and respiratory tract irritations. However, some individuals still illegally use RDB as a food additive. Therefore, a simple and accurate method is needed to determine RDB in real samples such as food or cosmetic products. In this study, the magnetic solid phase extraction (MSPE) method was used to measure very low amounts of RDB dye in water samples. The advantages of this method include simplicity, good repeatability, high preconcentration factor, higher extraction efficiency, low organic solvent volume requirement, rapid separation, low cost, high sensitivity, and interference removal compared to other methods. Within this approach, iron oxide nanoparticles were synthesised, followed by the application of tetra ethoxy silane (TEOS) and polydopamine (PDA) coatings on the nanoparticle surface, resulting in the creation of the Fe3O4@SiO2@PDA nano-sorbent. This nano-sorbent was then utilized as the magnetic solid phase in MSPE. The characteristics of the synthesized compounds were investigated by various methods such as infrared Fourier transform spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction spectroscopy (XRD), and vibrating sample magnetometry (VSM). Response surface methodology (RSM) and Box-Behnken (BB) design were used to optimize the variables affecting the adsorption process and achieved high recovery percentages. Under optimal experimental conditions, the detection limit and quantification limit of the method were found to be 0.73 and 2.42 μg L-1 for RDB, respectively, with RSDs of ±0.32% and ±0.67%. Furthermore, the linear concentration range of the proposed method for solid phase extraction of RDB was determined to be 10.0-900.0 μg L-1. Moreover, the recovery rates for tap water, lake water, and well water samples ranged from 96.9% to 98.6%.
Collapse
Affiliation(s)
- Abdollah Yari
- Faculty of Chemistry, Lorestan University, 68151-44316, Khorramabad, Iran.
| | - Mariam Salemzadeh
- Faculty of Chemistry, Lorestan University, 68151-44316, Khorramabad, Iran.
| |
Collapse
|
4
|
Peter M, Müller C. Systematic Comparison of Extract Clean-Up with Currently Used Sorbents for Dispersive Solid-Phase Extraction. Molecules 2024; 29:4656. [PMID: 39407587 PMCID: PMC11478316 DOI: 10.3390/molecules29194656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Dispersive solid-phase extraction (dSPE) is a crucial step for multiresidue analysis used to remove matrix components from extracts. This purification prevents contamination of instrumental equipment and improves method selectivity, sensitivity, and reproducibility. Therefore, a clean-up step is recommended, but an over-purified extract can lead to analyte loss due to adsorption to the sorbent. This study provides a systematic comparison of the advantages and disadvantages of the well-established dSPE sorbents PSA, GCB, and C18 and the novel dSPE sorbents chitin, chitosan, multi-walled carbon nanotube (MWCNT), and Z-Sep® (zirconium-based sorbent). They were tested regarding their clean-up capacity by visual inspection, UV, and GC-MS measurements. The recovery rates of 98 analytes, including pesticides, active pharmaceutical ingredients, and emerging environmental pollutants with a broad range of physicochemical properties, were determined by GC-MS/MS. Experiments were performed with five different matrices, commonly used in food analysis (spinach, orange, avocado, salmon, and bovine liver). Overall, Z-Sep® was the best sorbent regarding clean-up capacity, reducing matrix components to the greatest extent with a median of 50% in UV and GC-MS measurements, while MWCNTs had the largest impact on analyte recovery, with 14 analytes showing recoveries below 70%. PSA showed the best performance overall.
Collapse
Affiliation(s)
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany;
| |
Collapse
|
5
|
Bodur S, Bodur SE, Tutar BK, Bakırdere S, Yağmuroğlu O. Development of dispersive solid phase extraction method for the preconcentration of parathion ethyl as a simulant of nerve agent sarin from soil, plant and water samples prior to GC-MS determination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:829. [PMID: 39167268 DOI: 10.1007/s10661-024-13007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
In the presented study, an efficient and fast analytical method was developed for the determination of parathion ethyl as sarin simulant by gas chromatography-mass spectrometry (GC-MS). Dispersive solid phase extraction (DSPE) was performed to concentrate parathion ethyl from soil, plant and water samples. Reduced graphene oxide-iron (II, III) oxide (rGO-Fe3O4) nanocomposite was used as an adsorbent to collect the target analyte from the aqueous sample solutions. After the optimization of extraction/preconcentration parameters, optimum conditions for adsorbent amount, eluent type, mixing type/period, eluent volume and initial sample volume were determined as 15 mg, acetonitrile, vortex/30 s, 100 µL and 10 mL, respectively. Under the optimum conditions, analytical performance of the developed DSPE-GC-MS method was evaluated in terms of limit of detection (LOD), limit of quantitation (LOQ) and dynamic range. Dynamic range, LOD and LOQ values were figured out to be 0.94-235.15 µg/kg, 0.41 µg/kg and 1.36 µg/kg (mass based), respectively. Satisfactory percent recovery results (90.3-125% for soil, 93.5-108.7% for plant, 88.5-112.9% for tap water) were achieved for soil, plant and tap water samples which proved the accuracy and applicability of the developed method. It is predicted that the DSPE-GC-MS method can be accurately used for the detection of sarin in soil, plant and water samples taken from war territories.
Collapse
Affiliation(s)
- Süleyman Bodur
- Chemistry Department, Yıldız Technical University, 34220, Istanbul, Türkiye
- Faculty of Pharmacy, Department of Analytical Chemistry, İstinye University, 34010, Istanbul, Türkiye
- Scientific and Technological Research Application and Research Center, İstinye University, 34010, Istanbul, Türkiye
| | | | | | - Sezgin Bakırdere
- Chemistry Department, Yıldız Technical University, 34220, Istanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Piyade Street, No. 27, Çankaya, 06690, Ankara, Türkiye.
| | - Ozan Yağmuroğlu
- Air Force Academy, Department of Chemistry, National Defence University, 34149, Istanbul, Türkiye.
| |
Collapse
|
6
|
Feng W, Hu Y, Wang M, Liu LY. Highly Defective Zirconium-Based Metal-Organic Frameworks for the Efficient Adsorption and Detection of Sugar Phosphates in the Biological Sample. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37641-37655. [PMID: 38991175 DOI: 10.1021/acsami.4c06870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Enrichment and quantification of sugar phosphates (SPx) in biological samples were of great significance in biological medicine. In this work, a series of zirconium-based metal-organic frameworks (MOFs) with different degrees of defects, namely, HP-UiO-66-NH2-X, were synthesized using acetic acid as a modulator and were utilized as high-capacity adsorbents for the adsorption of SPx in biological samples. The results indicated that the addition of acetic acid altered the morphology of HP-UiO-66-NH2-X, with corresponding changes in pore size (3.99-9.28 nm) and specific surface area (894.44-1142.50 m2·g-1). HP-UiO-66-NH2-10 showed the outstanding performance by achieving complete adsorption of all four SPx using only 80 μg of the adsorbent. The excellent adsorption efficiency of HP-UiO-66-NH2-10 was also obtained with a wide pH range and short adsorption time (10 min). Adsorption experiments demonstrated that the adsorption process involved chemical adsorption and multilayer adsorption. By utilizing X-ray photoelectron spectroscopy and density functional theory to explain the adsorption mechanism, it was found that various interactions (including coordination, hydrogen bonding, and electrostatic interactions) collectively contributed to the exceptional adsorption capability of HP-UiO-66-NH2-10. Those results indicated that the defect strategy not only increased the specific surface area and pore size, providing additional adsorption sites, but also reduced the adsorption energy between HP-UiO-66-NH2-10 and SPx. Moreover, HP-UiO-66-NH2-10 showed a low limit of detection (0.001-0.01 ng·mL-1), high precision (<13.77%), and accuracy (80.10-111.83%) in serum, liver, and cells, good stability, high selectivity (SPx/glucose, 1:100 molar ratio), and high adsorption capacity (292 mg·g-1 for SPx). The practical detection of SPx from human serum was also verified, prefiguring the great potentials of defective zirconium-based MOFs for the enrichment and detection of SPx in the biological medicine.
Collapse
Affiliation(s)
- Wanfang Feng
- Department of Sanitary Inspection, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yuyan Hu
- Department of Sanitary Inspection, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Maoqing Wang
- Department of Sanitary Inspection, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Li-Yan Liu
- Department of Sanitary Inspection, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin 150086, Heilongjiang, China
| |
Collapse
|
7
|
Albarri R, Vardara HF, Al S, Önal A. Chromatographic Methods and Sample Pretreatment Techniques for Aldehydes, Biogenic Amine, and Carboxylic Acids in Food Samples. Crit Rev Anal Chem 2024:1-22. [PMID: 38900595 DOI: 10.1080/10408347.2024.2367232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
This review paper critically examines the current state of research concerning the analysis and derivatization of aldehyde, aromatic hydrocarbons and carboxylic acids components in foods and drinks samples, with a specific focus on the application of Chromatographic techniques. These diverse components, as vital contributors to the sensory attributes of food, necessitate accurate and sensitive analytical methods for their identification and quantification, which is crucial for ensuring food safety and compliance with regulatory standards. In this paper, High-Performance Liquid Chromatography (HPLC) and Gas Chromatographic (GC) methods for the separation, identification, and quantification of aldehydes in complex food matrices were reviewed. In addition, the review explores derivatization strategies employed to enhance the detectability and stability of aldehydes during chromatographic analysis. Derivatization methods, when applied judiciously, improve separation efficiency and increase detection sensitivity, thereby ensuring a more accurate and reliable quantification of aldehyde aromatic hydrocarbons and carboxylic acids species in food samples. Furthermore, methodological aspects encompassing sample preparation, chromatographic separation, and derivatization techniques are discussed. Validation was carried out in term of limit of detections are highlighted as crucial elements in achieving accurate quantification of compounds content. The discussion presented by emphasizing the significance of the combined HPLC and GC chromatography methods, along with derivatization strategies, in advancing the analytical capabilities within the realm of food science.
Collapse
Affiliation(s)
- Raneen Albarri
- Faculty of Pharmacy, Department of Analytical Chemistry, Institute of Health Science, Istanbul University, Istanbul, Turkey
| | - Hümeyra Funda Vardara
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University, Istanbul, Turkey
| | - Selen Al
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University, Istanbul, Turkey
| | - Armağan Önal
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Gutiérrez-Fernández L, Díez-Pascual AM, San Andrés MP. Dispersive Solid Phase Extraction of Melatonin with Graphene/Clay Mixtures and Fluorescence Analysis in Surfactant Aqueous Solutions. Molecules 2024; 29:2699. [PMID: 38893572 PMCID: PMC11173625 DOI: 10.3390/molecules29112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
In this work, the dispersive solid phase extraction (dSPE) of melatonin using graphene (G) mixtures with sepiolite (SEP) and bentonite (BEN) clays as sorbents combined with fluorescence detection has been investigated. The retention was found to be quantitative for both G/SEP and G/BEN 4/96 and 10/90 w/w mixtures. G/clay 4/96 w/w mixtures were selected to study the desorption process since the retention was weaker, thus leading to easier desorption. MeOH and aqueous solutions of the nonionic surfactant Brij L23 were tested as desorbents. For both clays and an initial sample volume of 25 mL, a percentage of melatonin recovery close to 100% was obtained using 10 or 25 mL of MeOH as desorbent. Further, using a G/SEP mixture, 25 mL as the initial sample volume and 5 mL of MeOH or 60 mM Brij L23 solution as the desorbent, recoveries of 98.3% and 90% were attained, respectively. The whole method was applied to herbal tea samples containing melatonin, and the percentage of agreement with the labeled value was 86.5%. It was also applied to herbal samples without melatonin by spiking them with two concentrations of this compound, leading to recoveries of 100 and 102%.
Collapse
Affiliation(s)
- Lucía Gutiérrez-Fernández
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain; (L.G.-F.); (A.M.D.-P.)
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain; (L.G.-F.); (A.M.D.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - María Paz San Andrés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain; (L.G.-F.); (A.M.D.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
9
|
Mahdavijalal M, Petio C, Staffilano G, Mandrioli R, Protti M. Innovative Solid-Phase Extraction Strategies for Improving the Advanced Chromatographic Determination of Drugs in Challenging Biological Samples. Molecules 2024; 29:2278. [PMID: 38792139 PMCID: PMC11124106 DOI: 10.3390/molecules29102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
In the past few decades, considerable scientific strides have been made in the subject of drug analysis in human biological samples. However, the risk caused by incorrect drug plasma levels in patients still remains an important concern. This review paper attempts to investigate the advances made over the last ten years in common sample preparation techniques (SPT) for biological samples based on solid sorbents, including solid-phase extraction (SPE) and solid-phase micro-extraction (SPME), and in particular in the field of molecularly imprinted polymers (MIPs), including non-stimuli-responsive and stimuli-responsive adsorbents. This class of materials is known as 'smart adsorbents', exhibiting tailored responses to various stimuli such as magnetic fields, pH, temperature, and light. Details are provided on how these advanced SPT are changing the landscape of modern drug analysis in their coupling with liquid chromatography-mass spectrometry (LC-MS) analytical techniques, a general term that includes high-performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography (UHPLC), as well as any variation of MS, such as tandem (MS/MS), multiple-stage (MSn), and high-resolution (HRMS) mass spectrometry. Some notes are also provided on coupling with less-performing techniques, such as high-performance liquid chromatography with ultraviolet (HPLC-UV) and diode array detection (HPLC-DAD) detection. Finally, we provide a general review of the difficulties and benefits of the proposed approaches and the future prospects of this research area.
Collapse
Affiliation(s)
- Mohammadreza Mahdavijalal
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.M.); (M.P.)
| | - Carmine Petio
- Psychiatric Diagnosis and Care Services, Local Health Unit Company (AUSL) of Bologna—IRCCS St. Orsola-Malpighi, 40138 Bologna, Italy;
| | - Giovanni Staffilano
- Cardiology and Intensive Care Unit, Local Health Company (ASL) of Teramo, 64100 Teramo, Italy;
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi), Alma Mater Studiorum—University of Bologna, 47921 Rimini, Italy
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.M.); (M.P.)
| |
Collapse
|
10
|
Weng X, Liu S, Huang J, Lv Y, Liu Y, Li X, Lin C, Ye X, Yang G, Song L, Liu M. Efficient dispersive solid phase extraction of trace nitrophenol pollutants in water with triazine porous organic polymer modified nanofiber membrane. J Chromatogr A 2024; 1717:464707. [PMID: 38310703 DOI: 10.1016/j.chroma.2024.464707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Detecting trace endocrine disruptors in water is crucial for evaluating the water quality. In this work, a innovative modified polyacrylonitrile@cyanuric chloride-triphenylphosphine nanofiber membrane (PAN@CC-TPS) was prepared by in situ growing triazine porous organic polymers on the polyacrylonitrile (PAN) nanofibers, and used in the dispersive solid phase extraction (DSPE) to enrich trace nitrobenzene phenols (NPs) in water. The resluted PAN@CC-TPS nanofiber membrane consisted of numerous PAN nanofibers cover with CC-TPS solid spheres (∼2.50 μm) and owned abundant functional groups, excellent enrichment performance and good stability. In addition, the method based on PAN@CC-TPS displayed outstanding capacity in detecting the trace nitrobenzene phenols, with 0.50-1.00 μg/L of the quantification, 0.10-0.80 μg/L of the detection limit, 85.35-113.55 % of the recovery efficiency, and 98.08-103.02 of the enrichment factor, which was comparable to most materials. Meanwhile, when PAN@CC-TPS was adopted in the real water samples (sea water and river water), the high enrichment factors and recovery percentages strongly confirmed the feasibility of PAN@CC-TPS for enriching and detecting the trace NPs. Besides, the related mechanism of extracting NPs on PAN@CC-TPS mainly involved the synergistic effect of hydrogen bonding, π-π stacking and hydrophobic effect.
Collapse
Affiliation(s)
- Xin Weng
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China
| | - Shuting Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China
| | - Jian Huang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China.
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China.
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China
| | - Xiaojuan Li
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China
| | - Guifang Yang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, China
| | - Liang Song
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, China
| |
Collapse
|
11
|
Ma Y, Xiang Y, Li X, Zhang D, Chen Q. Recombinant streptococcal protein G-modified metal-organic framework ZIF-8 for the highly selective purification of immunoglobulin G from human serum. Anal Chim Acta 2024; 1288:342175. [PMID: 38220305 DOI: 10.1016/j.aca.2023.342175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
A novel solid phase extractant His-rSPG@ZIF-8 was prepared by covalently coupling recombinant streptococcal protein G (His-rSPG) with ZIF-8. The His-rSPG@ZIF-8 composite was characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Due to the specific binding between the immunoglobulin binding region of His-rSPG and the Fc region of immunoglobulin G (IgG), the His-rSPG@ZIF-8 composite demonstrated exceptional selectivity in adsorbing IgG. In Britton-Robinson buffer (BR buffer) with a salt concentration of 500 mmol L-1 (0.04 mol L-1, pH 8.0), the His-rSPG@ZIF-8 composite exhibited a remarkable adsorption efficiency of 99.8 % for 0.05 mg of the composite on 200 μL of IgG solution (100 μg mL-1). The adsorption behavior of the His-rSPG@ZIF-8 composite aligns with the Langmuir adsorption model, and the theoretical maximum adsorption capacity is 1428.6 mg g-1. The adsorbed IgG molecules were successfully eluted using a SDS solution (0.5 %, m/m), resulting in a recovery rate of 91.2 %. Indeed, the His-rSPG@ZIF-8 composite was successfully utilized for the isolation and purification of IgG from human serum samples. The obtained IgG exhibited high purity, as confirmed by SDS-PAGE analysis. Additionally, LC-MS/MS analysis was employed to identify the human serum proteins following the adsorption and elution process using the His-rSPG@ZIF-8 composite material. The results revealed that the recovered solution contained an impressive content of immunoglobulin, accounting for 62.4 % of the total protein content. Furthermore, this process also led to the significant enrichment of low abundance proteins such as Serpin B4 and Cofilin-1. Consequently, the His-rSPG@ZIF-8 composite holds great promise for applications such as IgG purification and immunoassays. At the same time, it expands the application of metal-organic frameworks in the field of proteomics.
Collapse
Affiliation(s)
- Yufei Ma
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Yuhan Xiang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xin Li
- Department of Science and Technology, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| | - Dandan Zhang
- School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| | - Qing Chen
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| |
Collapse
|
12
|
Marzi Khosrowshahi E, Hassanpour Sabet R, Afshar Mogaddam MR, Khoubnasabjafari M, Jouyban-Gharamaleki V, Rayatpisheh M, Anushiravani A, Ghanbari R, Jouyban A. Carbonized aerogel/ZnO-based dispersive solid phase extraction of daclatasvir and sofosbuvir from biological samples prior to liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2024; 238:115841. [PMID: 37995479 DOI: 10.1016/j.jpba.2023.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Daclatasvir and sofosbuvir are antiviral medications utilized in the treatment of chronic hepatitis C virus (HCV) infection. Due to their low therapeutic index, careful monitoring is necessary to ensure that the optimal dose is administered. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) is an exceptionally sensitive and specific technique for quantifying these drugs within biological matrices. In this study, we developed a novel dispersive solid-phase extraction method employing a carbonized bio aerogel composite with ZnO for efficient extraction of daclatasvir and sofosbuvir from exhaled breath condensate, urine, and plasma samples. The extracted analytes were subsequently subjected to analysis using HPLC-MS/MS. Optimal parameters including pH adjustment, sorbent quantity variation, and elution solvent selection were fine-tuned to achieve maximum recovery efficiency while ensuring selectivity enhancements. The developed method demonstrated broad linearity ranging between 1.2 and 200 ng/mL along with good precision (relative standard deviations ≤6.2 %) and an acceptable coefficient of determination (r2 ≥0.994). These findings establish our proposed method as suitable for reliable drug quantification in clinical samples.
Collapse
Affiliation(s)
| | - Roghayeh Hassanpour Sabet
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rayatpisheh
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Anushiravani
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ghanbari
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
13
|
Aziz MN, Brotto L, Yacoub AS, Awad K, Brotto M. Detailed Protocol for Solid-Phase Extraction for Lipidomic Analysis. Methods Mol Biol 2024; 2816:151-159. [PMID: 38977597 DOI: 10.1007/978-1-0716-3902-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Developing robust analytical techniques is a vital phase to facilitate understanding the roles and impacts of various omic profilings in cellular functions. The comprehensive analysis of various biological molecules within a biological system requires a precise sample preparation technique. Solid-Phase Extraction (SPE) has proven to be an indispensable method in lipidomic analysis, providing an uncomplicated and user-friendly technique for extraction and purification of lipid components from complex biological matrices. Of all the factors influencing the reliability and success of SPE, column or adsorbent materials, flow rate, and storage conditions are paramount in terms of their significance. In this chapter, we will discuss in detail the SPE steps for lipidomic analysis in biofluid samples (serum and plasma) and muscle tissues.
Collapse
Affiliation(s)
- Marian N Aziz
- Cyclotron and Radiochemistry Program, Radiology Department, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leticia Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Ahmed S Yacoub
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
14
|
Fiorito S, Epifano F, Palumbo L, Collevecchio C, Spogli R, Genovese S. Separation and quantification of Tartrazine (E102) and Brilliant Blue FCF (E133) in green colored foods and beverages. Food Res Int 2023; 172:113094. [PMID: 37689866 DOI: 10.1016/j.foodres.2023.113094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
In the present study we investigated the capacities of a panel of 25 solid sorbents represented by layered structures, inorganic oxides and hydroxides, and phyllosilicates, to effectively remove in high yield Tartrazine (E102) and Brilliant Blue FCF (E133) from aqueous solutions, and more notable, green colored food matrices. Quantification of the title compounds have been achieved by HPLC-DAD analyses. Contents of E102 and E133 in real samples were in the range 1.3-36.5 μg/mL and 1.0-20.1 μg/mL, respectively. After a treatment of 1 min., in most cases a complete bleaching of solutions and deep coloring of the solid phase was recorded. The most effective solids to this aim were seen to be aluminium based ayered double hydroxides. In the case of magnesium oxide for E102, and magnesium aluminium D. benzensulfonate SDS 01 H8L and Florisil for E133, a selective adsorption (>99.9 %) of only one dye was observed. The adsorption recorded was strictly dependent on the loading of the sorbent. Related values were 300 mg for the separation of E102 by magnesium oxide from all the five food matrices under investigation, and in the range 200 mg-300 mg for magnesium aluminium D. benzensulfonate SDS 01 H8L and Florisil in the case of E133. The application of Langmuir and Freundlich models suggested that the adsorption may take place in the inner layers of the solids with a favourable thermodynamique outcome. Findings described herein offer the concrete possibility of quantifications of individual dyes in matrices containing more than one food colorant.
Collapse
Affiliation(s)
- Serena Fiorito
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| | - Lucia Palumbo
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Chiara Collevecchio
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Roberto Spogli
- Prolabin & Tefarm Srl, Via dell'Acciaio 9, 06134 Perugia, Italy
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| |
Collapse
|
15
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
16
|
Kluska M, Jabłońska J, Prukała W. Analytics, Properties and Applications of Biologically Active Stilbene Derivatives. Molecules 2023; 28:molecules28114482. [PMID: 37298957 DOI: 10.3390/molecules28114482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Stilbene and its derivatives belong to the group of biologically active compounds. Some derivatives occur naturally in various plant species, while others are obtained by synthesis. Resveratrol is one of the best-known stilbene derivatives. Many stilbene derivatives exhibit antimicrobial, antifungal or anticancer properties. A thorough understanding of the properties of this group of biologically active compounds, and the development of their analytics from various matrices, will allow for a wider range of applications. This information is particularly important in the era of increasing incidence of various diseases hitherto unknown, including COVID-19, which is still present in our population. The purpose of this study was to summarize information on the qualitative and quantitative analysis of stilbene derivatives, their biological activity, potential applications as preservatives, antiseptics and disinfectants, and stability analysis in various matrices. Optimal conditions for the analysis of the stilbene derivatives in question were developed using the isotachophoresis technique.
Collapse
Affiliation(s)
- Mariusz Kluska
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Joanna Jabłońska
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Wiesław Prukała
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
17
|
Javanbakht F, Afshar Mogaddam MR, Nemati M, Farajzadeh MA, Abbasalizadeh A. Determination of metronidazole and clarithromycin in plasma samples using surfactant-modified amorphous carbon-based DSPE combined with DLLME followed by HPLC. ANAL SCI 2023:10.1007/s44211-023-00338-0. [PMID: 37183226 DOI: 10.1007/s44211-023-00338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/30/2023] [Indexed: 05/16/2023]
Abstract
This work offers preparation of surfactant-modified amorphous carbon and its application in dispersive solid phase extraction of metronidazole and clarithromycin from plasma samples. The extraction procedure was combined with dispersive liquid-liquid microextraction for further preconcentration of the analytes for sensitive determination of the analytes followed by high performance liquid chromatography-diode array detector. In this work, first, the sorbent was added to the sample and the mixture vortexed to adsorb the analytes. Then, the obtained supernatant after centrifuging is discarded and the loaded analytes onto the sorbent surface were eluted with a water-miscible organic solvent. In the following, to further enrichment of the analytes the microextraction step was done. For this purpose, the eluate is taken, mixed with a water-immiscible organic solvent, and injected into deionized water. After centrifuging, an aliquat of the sedimented phase is taken and injected into the analytical instrument for the quantitative analysis. Under the optimum extraction conditions, high extraction recoveries (79 and 89% for metronidazole and clarithromycin, respectively), low limits of detection (2.1 and 1.9 ng mL-1 for metronidazole and clarithromycin, respectively) and quantification (7.0 and 6.3 ng mL-1 for metronidazole and clarithromycin, respectively), good repeatability (relative standard deviations less than 4.3% for intra- and 6.3% inter-day precisions), and wide linear ranges (7.3-1000 and 6.3-1000 ng mL-1 for metronidazole and clarithromycin, respectively) were obtained. At the end, the introduced method was applied on the plasma samples of the patients treated with metronidazole and clarithromycin successfully.
Collapse
Affiliation(s)
- Faezeh Javanbakht
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutics and Food Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahboob Nemati
- Pharmaceutics and Food Department, Tabriz University of Medical Sciences, Tabriz, Iran.
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Mersin 10, 99138, Nicosia, North Cyprus, Turkey
| | - Aysa Abbasalizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
18
|
Liu YJ, Bian Y, Zhang Y, Zhang YX, Ren A, Lin SH, Feng XS, Zhang XY. Diuretics in Different Samples: Update on the Pretreatment and Analysis Techniques. Crit Rev Anal Chem 2023:1-33. [PMID: 37130012 DOI: 10.1080/10408347.2023.2202260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diuretics are drugs that promote the excretion of water and electrolytes in the body and produce diuretic effects. Clinically, they are often used in the treatment of edema caused by various reasons and hypertension. In sports, diuretics are banned by the World Anti-Doping Agency (WADA). Therefore, in order to monitor blood drug concentration, identify drug quality and maintain the fairness of sports competition, accurate, rapid, highly selective and sensitive detection methods are essential. This review provides a comprehensive summary of the pretreatment and detection of diuretics in various samples since 2015. Commonly used techniques to extract diuretics include liquid-liquid extraction, liquid-phase microextraction, solid-phase extraction, solid-phase microextraction, among others. Determination methods include methods based on liquid chromatography, fluorescent spectroscopy, electrochemical sensor method, capillary electrophoresis and so on. The advantages and disadvantages of various pretreatment and analytical techniques are elaborated. In addition, future development prospects of these techniques are discussed.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ai Ren
- School of Pharmacy, China Medical University, Shenyang, China
| | - Shu-Han Lin
- School of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
19
|
Kim SH, Lee YH, Jeong MJ, Gwon DY, Lee JH, Shin Y, Choi H. LC-MS/MS Method Minimizing Matrix Effect for the Analysis of Bifenthrin and Butachlor in Chinese Chives and Its Application for Residual Study. Foods 2023; 12:foods12081683. [PMID: 37107478 PMCID: PMC10137788 DOI: 10.3390/foods12081683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The matrix effect refers to the change in the analytical signal caused by the matrix in which the sample is contained, as well as the impurities that are co-eluted with the target analyte. In crop sample analysis using LC-MS/MS, the matrix effect can affect the quantification results. Chinese chives are likely to exhibit a strong matrix effect when co-extracted with bifenthrin and butachlor due to the presence of phytochemicals and chlorophyll. A novel analytical method was developed to reduce the matrix effects of bifenthrin and butachlor to a negligible level in Chinese chives. The established method had a limit of quantitation of 0.005 mg/kg and correlation coefficients greater than 0.999 within the range of 0.005-0.5 mg/kg. Matrix effects were found to be negligible, with values ranging from -18.8% to 7.2% in four different sources of chives and two leafy vegetables. Compared to conventional analytical methods for the LOQ and matrix effect, the established method demonstrated improved performances. The analytical method was further applied in a residual study in chive fields. The active ingredient of butachlor 5 granule (GR) was not detected after soil admixture application, while that of bifenthrin 1 emulsifiable concentrate (EC) showed a range from 1.002 to 0.087 mg/kg after foliar spraying. The dissipation rate constant (k) of bifenthrin was determined to be 0.115, thus its half-life was calculated to be 6.0 days. From the results, PHI and safety use standards of both pesticides were suggested. The developed analytical method can be applied to accurately determine bifenthrin and butachlor residues in Chinese chives and provides a foundation for further research on the fate and behavior of these pesticides in the environment.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Yoon-Hee Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Mun-Ju Jeong
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Da-Yeong Gwon
- Department of Life & Environmental Sciences, Wonkwang University, Iksan 54538, Republic of Korea
| | - Ji-Ho Lee
- Department of Crop Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yongho Shin
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Hoon Choi
- Department of Life & Environmental Sciences, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
20
|
Sefid-Sefidehkhan Y, Mokhtari M, Mahmoodpoor A, Vaez-Gharamaleki Y, Khoubnasabjafari M, Afshar Moghaddam MR, Jouyban-Gharamaleki V, Dastmalchi S, Rahimpour E, Jouyban A. Efficient dispersive solid-phase extraction of methylprednisolone from exhaled breath of COVID-19 patients. RSC Adv 2023; 13:11457-11463. [PMID: 37063715 PMCID: PMC10090898 DOI: 10.1039/d2ra07902j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
In the current study, bismuth ferrite nano-sorbent was synthesized and utilized as a sorbent for the dispersive solid-phase extraction of methylprednisolone from exhaled breath samples. The size and morphology of the nano-sorbent were characterized by X-ray diffraction analysis and scanning electron microscopy. Following its desorption with acetonitrile, methylprednisolone was quantified by a high-performance liquid chromatography-ultraviolet detector. Factors affecting the extraction of methylprednisolone were optimized. Under optimized experimental conditions, a linear relationship between the analytical signals and methylprednisolone concentration was obtained in the range of 0.001-0.2 μg mL-1 for exhaled breath condensate samples and 0.002-0.4 μg per filter for filter samples. A pre-concentration factor of 6.4-fold, corresponding to an extraction recovery of 96.0%, was achieved. The validated method was applied for the determination of methylprednisolone in real samples taken from the exhaled breath of COVID-19 patients under mechanical ventilation.
Collapse
Affiliation(s)
- Yasaman Sefid-Sefidehkhan
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Mokhtari
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Yosra Vaez-Gharamaleki
- Hematology - Oncology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences Tabriz Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
21
|
Huang Q, Zhou H, Wu X, Song C, Zheng J, Lei M, Mu P, Wu P. Simultaneous determination of the residues of anesthetics and sedatives in fish using LC-QLIT-MS/MS combined with DSPE. Food Chem 2023; 403:134407. [PMID: 36183462 DOI: 10.1016/j.foodchem.2022.134407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Liquid chromatography coupled with quadrupole linear ion trap tandem mass spectrometry (LC-QLIT-MS/MS) technology operated in electrospray ionization (ESI) was developed for tracing anesthetic (AETs) and sedatives (SDTs) in fish. Sampling procedure was achieved by using acetonitrile extraction followed by dispersive solid phase extraction (DSPE) clean-up. Under the optimized laboratory conditions, reliable qualitative confirmation was obtained through the multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) mode. Results indicated a favorable linear in the concentration range of 1-100 μg∙kg-1 (0.1-10 μg∙kg-1 for MS-222), with regression coefficient not less than 0.9997. The detection limit ranges from 0.03 to 0.4 μg∙kg-1 (S/N = 3). The validated method was applied to determine AETs and SDTs in fish with satidfied recoveries of 86.3 %-111.7 % and the relative standard deviations (RSD) of 1.9 %-8.9 % (n = 6). Practical samples analysis indicated that the proposed method is simple, rapid, sensitive and accurate for identification of AETs and SDTs.
Collapse
|
22
|
Liu T, Song Y, Wang X, Shi L, Dong M. A Facile and Rapid Strategy for Quantifying PCBs in Cereals Based on Dispersive Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry: A Reference for Safety Concerns in Sustainable Textiles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1698. [PMID: 36837326 PMCID: PMC9961118 DOI: 10.3390/ma16041698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Cereals and their derivative products such as starch and cyclodextrin are significant natural materials for sustainable textile processing (e.g., sizing, dispersing, etc.). However, the contamination of cereals with polychlorinated biphenyls (PCBs) is often neglected, which has led to increasing concerns due to the adverse effects on end users. Therefore, monitoring PCBs in cereals is of great importance in preventing health risks. However, high starch, protein, and fat contents make cereals a complicated matrix and can challenge the analysis of PCBs in cereals. This work describes a facile and rapid strategy for quantifying 18 PCBs in cereals that included corn, wheat, and rice through dispersive solid-phase extraction and gas chromatography with mass spectrometry. Importantly, this was the first time that carboxyl-modified, multi-walled carbon nanotubes were incorporated in the detection of PCBs in cereals. The influences of several parameters on the extraction and clean-up efficiency were investigated; these included the type and volume of extraction solvent, sonication time, and the type and dosage of the adsorbent. The matrix effects on quantification were also evaluated. This approach exhibited a better clean-up performance. All the analytes showed weak matrix effects, and thus a solvent standard plot could be prepared for their quantification. Spiking experiments in the selected matrices at three concentration levels from 0.5 to 10 μg/kg resulted in satisfactory recoveries that ranged from 79.2% to 110.5% with relative standard deviations (RSDs; n = 6) less than 10.3%. The limits of detection (LODs) and quantification (LOQs) ranged from 0.04 to 0.1 μg/kg and 0.1 to 0.4 μg/kg, respectively. The practical application of this method was investigated by analyzing actual cereal samples, which demonstrated that the proposed approach was a facile and efficient strategy for PCB determination and provided a reference for the safety evaluation of sustainable textiles. The method also could be generalized to other troublesome samples for testing of multiple PCBs.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Hangzhou 310021, China
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215105, China
| | - Ying Song
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215105, China
| | - Xiangyun Wang
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Hangzhou 310021, China
| | - Linlin Shi
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215105, China
| | - Minghui Dong
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215105, China
| |
Collapse
|
23
|
Lim TS, Ch'ng ACW, Song BPC, Lai JY. Streptavidin-Coated Solid-Phase Extraction (SPE) Tips for Antibody Phage Display Biopanning. Methods Mol Biol 2023; 2702:275-290. [PMID: 37679625 DOI: 10.1007/978-1-0716-3381-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Phage display is a technique that allows the presentation of unique proteins on the surface of bacteriophages. The phage particles are usually screened via repetitive rounds of antigen-guided selection and phage amplification. The main advantage of this approach lies in the physical linkage between phenotype and genotype. This feature allows the isolation of single unique clones from a panning campaign consisting of a highly diverse population of clones. Due to the high-throughput nature of this technique, different approaches have been developed to assist phage display selections. One of which involves utilizing a streptavidin-coated solid-phase extraction (SPE) tip that is mounted to an electronically controlled motorized multichannel pipette. In this chapter, we will entail the procedures involved in the adaptation of a commercial SPE tip (MSIA™ streptavidin D.A.R.T's®) as the solid phase. This protocol is an updated version of a previous protocol with some minor refinements.
Collapse
Affiliation(s)
- Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
24
|
Sowa I, Wójciak M, Tyszczuk-Rotko K, Klepka T, Dresler S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8881. [PMID: 36556687 PMCID: PMC9786183 DOI: 10.3390/ma15248881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyaniline (PANI) is one of the best known and widely studied conducting polymers with multiple applications and unique physicochemical properties. Due to its porous structure and relatively high surface area as well as the affinity toward many analytes related to the ability to establish different types of interactions, PANI has a great potential as a sorbent in sample pretreatment before instrumental analyses. This study provides an overview of the applications of polyaniline and polyaniline composites as sorbents in sample preparation techniques based on solid-phase extraction, including conventional solid-phase extraction (SPE) and its modifications, solid-phase microextraction (SPME), dispersive solid-phase extraction (dSPE), magnetic solid-phase extraction (MSPE) and stir-bar sorptive extraction (SBSE). The utility of PANI-based sorbents in chromatography was also summarized. It has been shown that polyaniline is willingly combined with other components and PANI-based materials may be formed in a variety of shapes. Polyaniline alone and PANI-based composites were successfully applied for sample preparation before determination of various analytes, both metal ions and organic compounds, in different matrices such as environmental samples, food, human plasma, urine, and blood.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
25
|
Tang H, Liao S, Yang J, Zhang L, Tan A, Ou D, Lv S, Song X. Response Surface Optimization of Dispersive Solid-Phase Extraction Combined with HPLC for the Rapid Analysis of Multiple Coccidiostats in Feed. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238559. [PMID: 36500652 PMCID: PMC9738599 DOI: 10.3390/molecules27238559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Since antimicrobials were banned as feed additives, coccidiostats with favorable anticoccidial action and growth promotion have been widely used in the breeding industry. The monitoring of coccidiostats in feed is necessary, while the current methods based on mass-spectrometer analysis have limited applicability and matrix effects could interfere with the results. Accordingly, in the present paper, a rapid analytical strategy for the simultaneous determination of six synthetic coccidiostats in feed using high-performance liquid chromatography coupled with diode-array detection was developed. Coccidiostats in chicken feeds were extracted with the trichloroacetic acid-acetonitrile solution. The cleanup was performed by dispersive solid-phase extraction after the optimization of the response surface methodology. The method exhibited good linearity for target coccidiostats within the range of 0.05~20 µg/mL. Recoveries for six compounds in fortified feed samples were from 67.2% to 107.2% with relative standard deviations less than 9.6%. The limit of detection was 0.2~0.3 mg/kg. The successful application of the method in commercial feed verified that it is effective and sensitive for the rapid determination of multiple coccidiostats in chicken feeds.
Collapse
Affiliation(s)
- Haolan Tang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shudan Liao
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lilong Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Aijuan Tan
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Deyuan Ou
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shiming Lv
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Correspondence: (S.L.); (X.S.)
| | - Xuqin Song
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Correspondence: (S.L.); (X.S.)
| |
Collapse
|
26
|
Hagarová I, Nemček L, Šebesta M, Zvěřina O, Kasak P, Urík M. Preconcentration and Separation of Gold Nanoparticles from Environmental Waters Using Extraction Techniques Followed by Spectrometric Quantification. Int J Mol Sci 2022; 23:ijms231911465. [PMID: 36232767 PMCID: PMC9570491 DOI: 10.3390/ijms231911465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The quantification of gold nanoparticles (AuNP) in environmental samples at ultratrace concentrations can be accurately performed by sophisticated and pricey analytical methods. This paper aims to challenge the analytical potential and advantages of cheaper and equally reliable alternatives that couple the well-established extraction procedures with common spectrometric methods. We discuss several combinations of techniques that are suitable for separation/preconcentration and quantification of AuNP in complex and challenging aqueous matrices, such as tap, river, lake, brook, mineral, and sea waters, as well as wastewaters. Cloud point extraction (CPE) has been successfully combined with electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICP-MS), chemiluminescence (CL), and total reflection X-ray fluorescence spectrometry (TXRF). The major advantage of this approach is the ability to quantify AuNP of different sizes and coatings in a sample with a volume in the order of milliliters. Small volumes of sample (5 mL), dispersive solvent (50 µL), and extraction agent (70 µL) were reported also for surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME) coupled with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The limits of detection (LOD) achieved using different combinations of methods as well as enrichment factors (EF) varied greatly, being 0.004–200 ng L−1 and 8–250, respectively.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
| | - Lucia Nemček
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
| | - Martin Šebesta
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
| | - Ondřej Zvěřina
- Department of Public Health, Faculty of Medicine, Masaryk University in Brno, Kamenice 5, 625 00 Brno, Czech Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Martin Urík
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-9014-9392
| |
Collapse
|
27
|
Revealing the Hidden Diagnostic Clues of Male Infertility from Human Seminal Plasma by Dispersive Solid Phase Extraction and MALDI-TOF MS. Int J Mol Sci 2022; 23:ijms231810786. [PMID: 36142695 PMCID: PMC9506103 DOI: 10.3390/ijms231810786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Seminal plasma (SP) mirrors the local pathophysiology of the male reproductive system and represents a non-invasive fluid for the study of infertility. Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) provides a high-throughput platform to rapidly extrapolate the diagnostic profiles of information-rich patterns. In this study, dispersive solid phase extraction (d-SPE) combined with MALDI-TOF-MS was applied for the first time to the human SP, with the aim of revealing a diagnostic signature for male infertility. Commercially available octadecyl (C18)-, octyl (C8)-bonded silica sorbents and hexagonal mesoporous silica (HMS) were tested and the robustness of MALDI-TOF peptide profiling was evaluated. Best performances were obtained for C18-bonded silica with the highest detection of peaks and the lowest variation of spectral features. To assess the diagnostic potential of the method, C18-bonded silica d-SPE and MALDI-TOF-MS were used to generate enriched endogenous peptide profiles of SP from 15 fertile and 15 non-fertile donors. Principal component analysis (PCA) successfully separated fertile from non-fertile men into two different clusters. An array of seven semenogelin-derived peptides was found to distinguish the two groups, with high statistical significance. These findings, while providing a rapid and convenient route to selectively enrich native components of SP peptidome, strongly reinforce the prominent role of semenogelins in male infertility.
Collapse
|
28
|
Chi Z, Wu X, Zhang Q, Zhai F, Xu Z, Zhang D, Chen Q. Titanium-based metal-organic framework MIL-125(Ti) for the highly selective isolation and purification of immunoglobulin G from human serum. J Sep Sci 2022; 45:3754-3762. [PMID: 35933591 DOI: 10.1002/jssc.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022]
Abstract
Titanium-based metal-organic framework MIL-125(Ti) was synthesized by the hydrothermal method of terephthalic acid and tetra butyl titanate in N-N dimethylformamide and methanol. MIL-125(Ti) was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, nitrogen adsorption-desorption, energy-dispersive X-ray spectroscopy, zeta potential, scanning electron microscope and transmission electron microscopy. The results showed MIL-125(Ti) could be used as a potential adsorbent for protein separation and purification due to the high specific surface area, high stability and strong hydrophobicity. As a result, MIL-125(Ti) had adsorption selectivity for immunoglobulin G, which was due to hydrogen bond between MIL-125(Ti) and protein. At pH 8.0, the maximum adsorption efficiency of 0.25 mg MIL-125(Ti) for 300 μL 100 μg mL-1 immunoglobulin G was 98.3%, and its maximum adsorption capacity was 232.56 mg g-1 . The elution efficiency of immunoglobulin G was 92.4% by 0.1% SDS. SDS-PAGE result demonstrated the successful isolation of highly purified immunoglobulin G from the human serum. Therefore, a new method of separation and purification of immunoglobulin G in human serum using titanium-based metal-organic framework MIL-125(Ti) as a solid-phase adsorbent was established, which broadened the application scope of metal-organic frameworks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zixin Chi
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xi Wu
- Liaoning University, Shenyang, 110036, People's Republic of China
| | - Qiqi Zhang
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Fengyang Zhai
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Zesheng Xu
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Dandan Zhang
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Qing Chen
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| |
Collapse
|
29
|
Easy, fast, and clean fluorescence analysis of tryptophan with clays and graphene/clay mixtures. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Yucel N, Gulen H, Cakir Hatir P. Molecularly imprinted polymer nanoparticles for the recognition of ellagic acid. J Appl Polym Sci 2022. [DOI: 10.1002/app.52952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Necla Yucel
- Department of Bioengineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University Istanbul Turkey
| | - Hatice Gulen
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey
| | - Pinar Cakir Hatir
- Department of Biomedical Engineering Faculty of Engineering and Architecture, Istanbul Arel University Istanbul Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey
| |
Collapse
|
31
|
Razavi N, Taghi Hamed Mosavian M, Es'haghi Z. Curcumin-loaded magnetic chitosan-based solid-phase extraction-gas chromatography of migrated phthalate esters from pacifiers and plastic toys into baby saliva. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
The Crosslinker Matters: Vinylimidazole-Based Anion Exchange Polymer for Dispersive Solid-Phase Extraction of Phenolic Acids. SEPARATIONS 2022. [DOI: 10.3390/separations9030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Crosslinkers are indispensable constituents for the preparation of SPE materials with ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB) among the most prominent representatives. A crosslinker that has not yet been used for the preparation of SPE sorbents is 3,3’-(hexane-1,6-diyl)bis(1-vinylimidazolium) bromide [C6-bis-VIM] [Br]. In this study, we synthesized differently crosslinked vinylimidazole polymers with EGDMA, DVB and [C6-bis-VIM] [Br] and evaluated their extraction efficiencies towards phenolic acids. Dispersive SPE experiments performed with the [C6-bis-VIM] [Br] crosslinked polymers exhibited significantly higher extraction recoveries for the majority of analytes. Due to these promising results, the [C6-bis-VIM] [Br] crosslinked polymer was optimized in terms of the monomer to crosslinker ratio and an efficient dispersive SPE protocol was developed, with maximum recoveries ranging from 84.1–92.5% and RSD values ˂ 1%. The developed extraction procedure was also applied to cartridges resulting in recoveries between 97.2 and 98.5%, which were on average 5% higher than with the commercial anion exchange sorbent Oasis® MAX. Furthermore, the sorbent was regenerated showing a good reusability for the majority of analytes. In conclusion, this study clearly highlights the yet untapped potential of the crosslinker, [C6-bis-VIM] [Br], with respect to the synthesis of efficient anion exchange polymers for SPE.
Collapse
|
33
|
Duque A, Grau J, Benedé JL, Alonso RM, Campanero MA, Chisvert A. Low toxicity deep eutectic solvent-based ferrofluid for the determination of UV filters in environmental waters by stir bar dispersive liquid microextraction. Talanta 2022; 243:123378. [DOI: 10.1016/j.talanta.2022.123378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023]
|
34
|
Zhang C, Xing H, Yang L, Fei P, Liu H. Development trend and prospect of solid phase extraction technology. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Wan Q, Liu H, Deng Z, Bu J, Li T, Yang Y, Zhong S. A critical review of molecularly imprinted solid phase extraction technology. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02744-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Kanu AB. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J Chromatogr A 2021; 1654:462444. [PMID: 34380070 DOI: 10.1016/j.chroma.2021.462444] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022]
Abstract
This review article compares and contrasts sample preparation techniques coupled with high-performance liquid chromatography (HPLC) and describes applications developed in biomedical, forensics, and environmental/industrial hygiene in the last two decades. The proper sample preparation technique can offer valued data for a targeted application when coupled to HPLC and a suitable detector. Improvements in sample preparation techniques in the last two decades have resulted in efficient extraction, cleanup, and preconcentration in a single step, thus providing a pathway to tackle complex matrix applications. Applications such as biological therapeutics, proteomics, lipidomics, metabolomics, environmental/industrial hygiene, forensics, glycan cleanup, etc., have been significantly enhanced due to improved sample preparation techniques. This review looks at the early sample preparation techniques. Further, it describes eight sample preparation technique coupled to HPLC that has gained prominence in the last two decades. They are (1) solid-phase extraction (SPE), (2) liquid-liquid extraction (LLE), (3) gel permeation chromatography (GPC), (4) Quick Easy Cheap Effective Rugged, Safe (QuEChERS), (5) solid-phase microextraction (SPME), (6) ultrasonic-assisted solvent extraction (UASE), and (7) microwave-assisted solvent extraction (MWASE). SPE, LLE, GPC, QuEChERS, and SPME can be used offline and online with HPLC. UASE and MWASE can be used offline with HPLC but have also been combined with the online automated techniques of SPE, LLE, GPC, or QuEChERS for targeted analysis. Three application areas of biomedical, forensics, and environmental/industrial hygiene are reviewed for the eight sample preparation techniques. Three hundred and twenty references on the eight sample preparation techniques published over the last two decades (2001-2021) are provided. Other older references were included to illustrate the historical development of sample preparation techniques.
Collapse
Affiliation(s)
- A Bakarr Kanu
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, United States.
| |
Collapse
|
37
|
Song H, Wang X, Hou S, Zhang Y, Luo X, Li T, Ji S. Economical irregular silica as an effective dispersive solid-phase extraction sorbent for the quantification of calcitriol in soft capsules. J Pharm Biomed Anal 2021; 203:114227. [PMID: 34198196 DOI: 10.1016/j.jpba.2021.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022]
Abstract
Calcitriol is an active product of vitamin D produced by the liver and kidney hydroxylase metabolism with strong physiological activity. It is the preferred form of medicine for patients with insufficient bone mineralization due to chronic kidney disease. Calcitriol soft capsule is one of the common preparation forms, the main drug content of which is very low (1.55 μg g-1), and the pharmaceutical excipients interfere greatly, especially the oily matrix medium-chain triglycerides. Therefore, removing the interference of oily matrix is the main challenge in the content determination. At present, the commonly used sample purification method for the determination of calcitriol in soft capsules is liquid-liquid extraction, but it usually consumes a lot of toxic organic solvents and it is costly. The adoption of SPE purification method, on the one hand, requires specific experimental equipment, and on the other hand, the organic solvent used in the experiment may cause the dissolution of SPE column tube materials, which will interfere with the subsequent detection. Herein, in order to achieve a cost-effective and reliable determination of calcitriol soft capsule content, we developed a dispersive solid-phase (DSPE) extraction method that directly uses irregular silica as sorbent, which is followed by high-performance liquid chromatography equipped with a UV detector(HPLC-UV)analysis. Selective retention of calcitriol is achieved by the polar interaction between calcitriol and silica, what's more, sufficient contact between washing solvent and sorbent can be guaranteed. Therefore, after pretreatment with DSPE, the interference of oily matrix on detection can be mostly removed and then improve the accuracy of the method compared to the SPE method. Under the optimal conditions of DSPE, calcitriol showed a good linear relationship in the range of 0.15-2.99 μg g-1, the R2 was 0.997. Satisfactory recoveries ranging from 101.1%-102.0% for calcitriol were achieved in the oily matrix at the levels of 0.75, 1.50 and 2.24 μg g-1. And the intra-day and inter-day RSD were less than 2.5 % and 3.2 %. Meanwhile, the LOD and LOQ of calcitriol was 0.01 μg g-1 and 0.02 μg g-1, which is in full compliance with the regulatory level fixed by the EU, China or other countries. This method was further verified to determine the content of calcitriol in commercial calcitriol soft capsules and the recoveries of three batches of products was 86.2 %-94.4 %. Based on these characteristics, the proposed method makes it possible to determine the low content of weakly polar drugs in the oily matrix in a simple, low-cost and reliable way.
Collapse
Affiliation(s)
- Huilin Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, 210009, China
| | - Xingchen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, 210009, China
| | - Siyu Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, 210009, China
| | - Yuqi Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, 210009, China
| | - Xi Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1, Bei-er-tiao, Zhong-guan-cun, Beijing, 100190, China
| | - Tengfei Li
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Shunli Ji
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
38
|
Salve S, Bahiram Y, Jadhav A, Rathod R, Tekade RK. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Crit Rev Anal Chem 2021; 53:46-68. [PMID: 34096402 DOI: 10.1080/10408347.2021.1934651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preparation of the biological samples is one of the most critical steps in sample analysis. In past decades, the liquid-liquid extraction technique has been used to extract the desired analytes from complex biological matrices. However, solid-phase extraction (SPE) gained popularity due to versatility, simplicity, selectivity, reproducibility, high sample recovery %, solvent economy, and time-saving nature. The superior extraction efficiency of SPE can be attributed to the development of advanced techniques, including the nanosorbents technology. The nanosorbent technology significantly simplified the sample preparation, improved the selectivity, diversified the application, and accelerated the sample analysis. This review critically expands on the to-date advancements reported in SPE with particular regards to the nanosorbent technology.
Collapse
Affiliation(s)
- Sushmita Salve
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Yogita Bahiram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amol Jadhav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rajeshwari Rathod
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
39
|
Manousi N, Plastiras OE, Deliyanni EA, Zachariadis GA. Green Bioanalytical Applications of Graphene Oxide for the Extraction of Small Organic Molecules. Molecules 2021; 26:molecules26092790. [PMID: 34065150 PMCID: PMC8126010 DOI: 10.3390/molecules26092790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bioanalysis is the scientific field of the quantitative determination of xenobiotics (e.g., drugs and their metabolites) and biotics (e.g., macromolecules) in biological matrices. The most common samples in bioanalysis include blood (i.e., serum, plasma and whole blood) and urine. However, the analysis of alternative biosamples, such as hair and nails are gaining more and more attention. The main limitations for the determination of small organic compounds in biological samples is their low concentration in these matrices, in combination with the sample complexity. Therefore, a sample preparation/analyte preconcentration step is typically required. Currently, the development of novel microextraction and miniaturized extraction techniques, as well as novel adsorbents for the analysis of biosamples, in compliance with the requirements of Green Analytical Chemistry, is in the forefront of research in analytical chemistry. Graphene oxide (GO) is undoubtedly a powerful adsorbent for sample preparation that has been successfully coupled with a plethora of green extraction techniques. GO is composed of carbon atoms in a sp2 single-atom layer of a hybrid connection, and it exhibits high surface area, as well as good mechanical and thermal stability. In this review, we aim to discuss the applications of GO and functionalized GO derivatives in microextraction and miniaturized extraction techniques for the determination of small organic molecules in biological samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| | - Orfeas-Evangelos Plastiras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni A. Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| |
Collapse
|
40
|
Janczura M, Luliński P, Sobiech M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. MATERIALS 2021; 14:ma14081850. [PMID: 33917896 PMCID: PMC8068262 DOI: 10.3390/ma14081850] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
In the last 10 years, we have witnessed an extensive development of instrumental techniques in analytical methods for determination of various molecules and ions at very low concentrations. Nevertheless, the presence of interfering components of complex samples hampered the applicability of new analytical strategies. Thus, additional sample pre-treatment steps were proposed to overcome the problem. Solid sorbents were used for clean-up samples but insufficient selectivity of commercial materials limited their utility. Here, the application of molecularly imprinted polymers (MIPs) or ion-imprinted polymers (IIPs) in the separation processes have recently attracted attention due to their many advantages, such as high selectivity, robustness, and low costs of the fabrication process. Bulk or monoliths, microspheres and core-shell materials, magnetically susceptible and stir-bar imprinted materials are applicable to different modes of solid-phase extraction to determine target analytes and ions in a very complex environment such as blood, urine, soil, or food. The capability to perform a specific separation of enantiomers is a substantial advantage in clinical analysis. The ion-imprinted sorbents gained interest in trace analysis of pollutants in environmental samples. In this review, the current synthetic approaches for the preparation of MIPs and IIPs are comprehensively discussed together with a detailed characterization of respective materials. Furthermore, the use of sorbents in environmental, food, and biomedical analyses will be emphasized to point out current limits and highlight the future prospects for further development in the field.
Collapse
|
41
|
Giebułtowicz J, Korytowska N, Sobiech M, Polak S, Wiśniowska B, Piotrowski R, Kułakowski P, Luliński P. Magnetic Core-Shell Molecularly Imprinted Nano-Conjugates for Extraction of Antazoline and Hydroxyantazoline from Human Plasma-Material Characterization, Theoretical Analysis and Pharmacokinetics. Int J Mol Sci 2021; 22:ijms22073665. [PMID: 33915912 PMCID: PMC8038096 DOI: 10.3390/ijms22073665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to develop magnetic molecularly imprinted nano-conjugate sorbent for effective dispersive solid phase extraction of antazoline (ANT) and its metabolite, hydroxyantazoline (ANT-OH) in analytical method employing liquid chromatography coupled with mass spectrometry method. The core–shell material was characterized in terms of adsorption properties, morphology and structure. The heterogeneous population of adsorption sites towards ANT-OH was characterized by two Kd and two Bmax values: Kd (1) = 0.319 µg L−1 and Bmax (1) = 0.240 μg g−1, and Kd (2) = 34.6 µg L−1 and Bmax (2) = 5.82 μg g−1. The elemental composition of magnetic sorbent was as follows: 17.55, 37.33, 9.14, 34.94 wt% for Si, C, Fe and O, respectively. The extraction protocol was optimized, and the obtained results were explained using theoretical analysis. Finally, the analytical method was validated prior to application to pharmacokinetic study in which the ANT was administrated intravenously to three healthy volunteers. The results prove that the novel sorbent could be useful in extraction of ANT and ANT-OH from human plasma and that the analytical strategy could be a versatile tool to explain a potential and pharmacological activity of ANT and ANT-OH.
Collapse
Affiliation(s)
- Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
- Correspondence:
| | - Natalia Korytowska
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Monika Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.S.); (P.L.)
| | - Sebastian Polak
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (S.P.); (B.W.)
| | - Barbara Wiśniowska
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (S.P.); (B.W.)
| | - Roman Piotrowski
- Department of Cardiology, Postgraduate Medical School, Grochowski Hospital, 04-073 Warsaw, Poland; (R.P.); (P.K.)
| | - Piotr Kułakowski
- Department of Cardiology, Postgraduate Medical School, Grochowski Hospital, 04-073 Warsaw, Poland; (R.P.); (P.K.)
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.S.); (P.L.)
| |
Collapse
|