1
|
Hrichi S, Chaâbane-Banaoues R, Hrichi H, Belgacem S, Babba O, Flamini G, Babba H. Chemical composition and antifungal efficacy of Tunisian Prunus armeniaca L. kernels with formulation of an antidermatophyte cream based on kernel powder. Fitoterapia 2024; 179:106223. [PMID: 39341348 DOI: 10.1016/j.fitote.2024.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The biological activities of plant products are extremely correlated to the constituents present in each derivate. The present research aims to obtain by gas chromatography, the chemical profile of Prunus armeniaca L. kernel volatile fractions. The evaluation of the in vitro antifungal activities of the sterilized powder and volatile fractions of the plant P. armeniaca L. kernels was performed. Diffusion in a solid medium and broth microdilution methods were applied on fungi with medical importance (dermatophytes, yeasts and Aspergillus spp.). P. armeniaca L. powder based antidermatphyte cream has been formulated. Hydro-distillation generated two volatile fractions (VF1 and VF2) and chromatographic analysis showed the presence of three compounds for VF1 (98.7 % benzaldehyde, 1.0 % benzyl alcohol and 0.3 % 1,8-cineole) and two compounds for VF2 (90.3 % benzaldehyde and 9.3 % benzyl alcohol). The 2.5 % to 5 % concentrations in powder showed antifungal activities against dermatophytic strains. 1.25 to 2 mg/mL concentrations in volatile fractions were efficient against yeast strains, with a better efficiency for the VF1. The creams formulated were stable, cosmetically attractive with satisfactory pH, viscosity and spread ability. Prunus armeniaca L. kernel powders and the cream derived from them exhibit potent antifungal activities. This work presents a simple, ecological and economical means of formulating antifungal active substances and valorizing natural products.
Collapse
Affiliation(s)
- Soukaina Hrichi
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia; Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia.
| | - Raja Chaâbane-Banaoues
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Haikel Hrichi
- Physics Department, Faculty of Science and Arts, Al-Baha University, AlMikhwah 65931, Al-Baha, Saudi Arabia; Laboratory of Interfaces and Advanced Materials, Faculty of Science, University of Monastir, Monastir 5000, Tunisia
| | - Sameh Belgacem
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Oussama Babba
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Hamouda Babba
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
2
|
Dardouri NE, Hrichi S, Torres P, Chaâbane-Banaoues R, Sorrenti A, Roisnel T, Turowska-Tyrk I, Babba H, Crusats J, Moyano A, Nasri H. Synthesis, Characterization, X-ray Molecular Structure, Antioxidant, Antifungal, and Allelopathic Activity of a New Isonicotinate-Derived meso-Tetraarylporphyrin. Molecules 2024; 29:3163. [PMID: 38999116 PMCID: PMC11243641 DOI: 10.3390/molecules29133163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
The present article describes the synthesis of an isonicotinate-derived meso-arylporphyrin, that has been fully characterized by spectroscopic methods (including fluorescence spectroscopy), as well as elemental analysis and HR-MS. The structure of an n-hexane monosolvate has been determined by single-crystal X-ray diffraction analysis. The radical scavenging activity of this new porphyrin against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical has been measured. Its antifungal activity against three yeast strains (C. albicans ATCC 90028, C. glabrata ATCC 64677, and C. tropicalis ATCC 64677) has been tested using the disk diffusion and microdilution methods. Whereas the measured antioxidant activity was low, the porphyrin showed moderate but encouraging antifungal activity. Finally, a study of its effect on the germination of lentil seeds revealed interesting allelopathic properties.
Collapse
Affiliation(s)
- Nour Elhouda Dardouri
- Laboratory of Physical Chemistry of Materials (LR01ES19), Faculty of Science of Monastir, University of Monastir, Avenue de l'Environment, Monastir 5019, Tunisia
| | - Soukaina Hrichi
- Laboratory of Physical Chemistry of Materials (LR01ES19), Faculty of Science of Monastir, University of Monastir, Avenue de l'Environment, Monastir 5019, Tunisia
- Laboratory of Medical and Molecular Parasitology-Mycology (LP3M), Faculty of Pharmacy, University of Monastir, LR12ES08, Monastir 5000, Tunisia
| | - Pol Torres
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Raja Chaâbane-Banaoues
- Laboratory of Medical and Molecular Parasitology-Mycology (LP3M), Faculty of Pharmacy, University of Monastir, LR12ES08, Monastir 5000, Tunisia
| | - Alessandro Sorrenti
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Thierry Roisnel
- Institute of Chemical Sciences of Rennes, UMR 6226, University of Rennes 1, Beaulieu Campus, 35042 Rennes, France
| | - Ilona Turowska-Tyrk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Hamouda Babba
- Laboratory of Medical and Molecular Parasitology-Mycology (LP3M), Faculty of Pharmacy, University of Monastir, LR12ES08, Monastir 5000, Tunisia
| | - Joaquim Crusats
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institute of Cosmos Science, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Albert Moyano
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Habib Nasri
- Laboratory of Physical Chemistry of Materials (LR01ES19), Faculty of Science of Monastir, University of Monastir, Avenue de l'Environment, Monastir 5019, Tunisia
| |
Collapse
|
3
|
Skała E, Szopa A. Dipsacus and Scabiosa Species-The Source of Specialized Metabolites with High Biological Relevance: A Review. Molecules 2023; 28:molecules28093754. [PMID: 37175164 PMCID: PMC10180103 DOI: 10.3390/molecules28093754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The genera Dipsacus L. and Scabiosa L. of the Caprifoliaceae family are widely distributed in Europe, Asia, and Africa. This work reviews the available literature on the phytochemical profiles, ethnomedicinal uses, and biological activities of the most popular species. These plants are rich sources of many valuable specialized metabolites with beneficial medicinal properties, such as triterpenoid derivatives, iridoids, phenolic acids, and flavonoids. They are also sources of essential oils. The genus Dipsacus has been used for centuries in Chinese and Korean folk medicines to treat bone (osteoporosis) and joint problems (rheumatic arthritis). The Korean Herbal Pharmacopoeia and Chinese Pharmacopoeia include Dipsaci radix, the dried roots of D. asperoides C.Y.Cheng & T.M.Ai. In addition, S. comosa Fisch. ex Roem & Schult. and S. tschiliiensis Grunning are used in traditional Mongolian medicine to treat liver diseases. The current scientific literature data indicate that these plants and their constituents have various biological properties, including inter alia antiarthritic, anti-neurodegenerative, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities; they have also been found to strengthen tendon and bone tissue and protect the liver, heart, and kidney. The essential oils possess antibacterial, antifungal, and insecticidal properties. This paper reviews the key biological values of Dipsacus and Scabiosa species, as identified by in vitro and in vivo studies, and presents their potential pharmacological applications.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
4
|
Essghaier B, Dridi R, Mottola F, Rocco L, Zid MF, Hannachi H. Biosynthesis and Characterization of Silver Nanoparticles from the Extremophile Plant Aeonium haworthii and Their Antioxidant, Antimicrobial and Anti-Diabetic Capacities. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010100. [PMID: 36616010 PMCID: PMC9823831 DOI: 10.3390/nano13010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
The present paper described the first green synthesis of silver nanoparticles (AgNPs) from the extremophile plant Aeonium haworthii. The characterization of the biosynthesized silver nanoparticles was carried out by using UV-Vis, FTIR and STM analysis. The antioxidant, antidiabetic and antimicrobial properties were also reported. The newly described AgNPs were spherical in shape and had a size of 35-55 nm. The lowest IC50 values measured by the DPPH assay indicate the superior antioxidant behavior of our AgNPs as opposed to ascorbic acid. The silver nanoparticles show high antidiabetic activity determined by the inhibitory effect of α amylase as compared to the standard Acarbose. Moreover, the AgNPs inhibit bacterial growth owing to a bactericidal effect with the MIC values varying from 0.017 to 1.7 µg/mL. The antifungal action was evaluated against Candida albicans, Candida tropicalis, Candida glabrata, Candida sake and non-dermatophytic onychomycosis fungi. A strong inhibitory effect on Candida factors' virulence was observed as proteinase and phospholipase limitations. In addition, the microscopic observations show that the silver nanoparticles cause the eradication of blastospores and block filamentous morphogenesis. The combination of the antioxidant, antimicrobial and antidiabetic behaviors of the new biosynthesized silver nanoparticles highlights their promising use as natural phytomedicine agents.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Department of Biology, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia
| | - Rihab Dridi
- Laboratoire de Matériaux Cristallochimie et Thermodynamique Appliquée, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El-Manar II, Tunis 2092, Tunisia
| | - Filomena Mottola
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania L.Vanvitelli, 81100 Caserta, Italy
| | - Lucia Rocco
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania L.Vanvitelli, 81100 Caserta, Italy
| | - Mohamed Faouzi Zid
- Laboratoire de Matériaux Cristallochimie et Thermodynamique Appliquée, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El-Manar II, Tunis 2092, Tunisia
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint LR18ES04, Department of Biology, Faculty of Sciences, University Tunis El-Manar II, Tunis 2092, Tunisia
| |
Collapse
|
5
|
Hrichi S, Chaâbane-Banaoues R, Alibrando F, Altemimi AB, Babba O, Majdoub YOE, Nasri H, Mondello L, Babba H, Mighri Z, Cacciola F. Chemical Composition, Antifungal and Anti-Biofilm Activities of Volatile Fractions of Convolvulus althaeoides L. Roots from Tunisia. Molecules 2022; 27:6834. [PMID: 36296427 PMCID: PMC9609869 DOI: 10.3390/molecules27206834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The antifungal drugs currently available and mostly used for the treatment of candidiasis exhibit the phenomena of toxicity and increasing resistance. In this context, plant materials might represent promising sources of antifungal agents. The aim of this study is to evaluate for the first time the chemical content of the volatile fractions (VFs) along with the antifungal and anti-biofilm of Convolvulus althaeoides L. roots. The chemical composition was determined by gas chromatography coupled to a flame ionization detector and mass spectrometry. In total, 73 and 86 chemical compounds were detected in the n-hexane (VF1) and chloroform (VF2) fractions, respectively. Analysis revealed the presence of four main compounds: n-hexadecenoic acid (29.77%), 4-vinyl guaiacol (12.2%), bis(2-ethylhexyl)-adipate (9.69%) and eicosane (3.98%) in the VF extracted by hexane (VF1). n-hexadecenoic acid (34.04%), benzyl alcohol (7.86%) and linoleic acid (7.30%) were the main compounds found in the VF extracted with chloroform (VF2). The antifungal minimum inhibitory concentrations (MICs) of the obtained fractions against Candida albicans, Candida glabrata and Candida tropicalis were determined by the micro-dilution technique and values against Candida spp. ranged from 0.87 to 3.5 mg/mL. The biofilm inhibitory concentrations (IBF) and sustained inhibition (BSI) assays on C. albicans, C. glabrata and C. tropicalis were also investigated. The VFs inhibited biofilm formation up to 0.87 mg/mL for C. albicans, up to 1.75 mg/mL against C. glabrata and up to 0.87 mg/mL against C. tropicalis. The obtained results highlighted the synergistic mechanism of the detected molecules in the prevention of candidosic biofilm formation.
Collapse
Affiliation(s)
- Soukaina Hrichi
- Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Raja Chaâbane-Banaoues
- Laboratory of Parasitology and Mycology (LP3M), Department of Clinical Biology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Filippo Alibrando
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Oussama Babba
- Laboratory of Parasitology and Mycology (LP3M), Department of Clinical Biology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Habib Nasri
- Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Luigi Mondello
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Hamouda Babba
- Laboratory of Parasitology and Mycology (LP3M), Department of Clinical Biology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Zine Mighri
- Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy
| |
Collapse
|
6
|
Petrogenesis and Tectonic Implications of Early Paleozoic Magmatism in Awen Gold District, South Section of the Truong Son Orogenic Belt, Laos. MINERALS 2022. [DOI: 10.3390/min12080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Truong Son orogenic belt (TSOB) is one of the most important orogenic belts in the Indochina block. There are numerous mafic to felsic intrusions in the Early Paleozoic caused by the Tethyan orogeny. However, the tectono-magmatic evolution of the TSOB in the Early Paleozoic is still unclear. In this paper, zircon U-Pb dating, whole-rock geochemistry, and the Sr-Nd isotopic data of the Early Paleozoic magmatic rocks have been systematically investigated to explore the petrogenesis and tectonic significance of these rocks in the TSOB. Based on our new results integrated with previous geological data, four major tectono-magmatic episodes are identified. (1) The Middle Cambrian (~507 Ma) is the early stage of northward subduction of the Tamky-Phuoc Son Ocean. (2) The Early Ordovician to Middle Ordovician (483–461 Ma) is the main subduction stage of the Tamky-Phuoc Son Ocean. The intrusive rock associations imply the closure of the Tamky-Phuoc Son Ocean. (3) The Late Ordovician to Early Silurian (461–438 Ma) is the collision stage of the Kontum massif and Truong Son terrane. (4) The Early Silurian to Late Silurian (438–410 Ma) is the late stage of collision accompanied by slab roll-back.
Collapse
|
7
|
The Moderator Effect of Communicative Rational Action in the Relationship between Emotional Labor and Job Satisfaction. SUSTAINABILITY 2022. [DOI: 10.3390/su14137625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The aim of this study was to determine whether emotional labor behavior has an effect on job satisfaction, and if there is an effect, to reveal whether communicative rational action has a moderator effect. This research was carried out in the banking sector. The sample group consisted of administrators of foreign capital bank managers (427) at all levels in Turkey. The collected data were analyzed with the IBM SPSS 21 program. Multiple regression analysis and SPSS PROCESS v3.5 (model1) methods were used in the analysis. According to the analysis, the three sub-dimensions of communicative rational action (practical-rational action, rational communication, and rational action) have a moderator role in the effect of emotional labor and job satisfaction. The other two sub dimensions (value–rational–action and firm family) do not have a moderator role in this effect. In the analysis made according to the total score of communicative rational action, the moderator role of communicative rational action in the effect of emotional labor and job satisfaction was determined. As a result of the research and analysis, it was determined that emotional labor has a positive effect on the phenomenon of job satisfaction.
Collapse
|
8
|
Integration of Stress–Strain Maps in Mineral Systems Targeting for IOCG Mineralisation within the Mt. Woods Inlier, Gawler Craton, South Australia. MINERALS 2022. [DOI: 10.3390/min12060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The application of finite element analysis is used to simulate the relative distribution and magnitude of stress–strain conditions during a geologically brief, NNW-SSE-oriented, extensional event (1595 Ma to 1590 Ma), co-incident with IOCG-hydrothermal fluid flow and mineralisation across the Mt Woods Inlier, Gawler Craton, South Australia. Differential stress and shear strain maps across the modelled terrane highlight regions that were predisposed to strain localization, extensional failure and fluid throughput during the simulated mineralisation event. These maps are integrated with other datasets and interpretation layers, one of which is a proposed structural–geometrical relationship apparent in many world-class IOCG deposits, including Prominent Hill, Olympic Dam, Sossego, Salobo, Cristalino and Candelaria. These deposits occur at steeply plunging, pipe-like intersections of conjugate extensional systems of faults, shears and/or contacts, wherein the obtuse angle may have been bisected by the maximum principal extensional axis (viz., σ3) during mineralisation. Several other layers are also used for the generation of targets, such as distance from major shear zones, favourable host lithologies, and proximity to tectonostratigraphic contacts of markedly contrasting competency. The result is an integrated target index or heat map for IOCG prospectively across the Mt. Woods Inlier.
Collapse
|
9
|
Blockchain Technology in Operations & Supply Chain Management: A Content Analysis. SUSTAINABILITY 2022. [DOI: 10.3390/su14106192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Scholars are increasingly examining how the distributed blockchain technology can counter specific supply chain and operations management challenges. Various research approaches emerge from different scholarly backgrounds, but the interrelation of research areas and current trends has not been adequately considered in a systematic review. We employ a data-driven content analysis approach to examine previous research on blockchain technology in operations management and supply chain management. We investigate the extent to which blockchain technology was considered in scholarly works, structure the research efforts, and identify trends, interrelated themes, and promising research opportunities. Quantitative and qualitative content analysis is conducted on an extensive literature sample of 410 articles. Results indicate an optimistic attitude due to potentials such as tracking and tracing abilities, efficiency increases, and trust-building. Conceptual studies dominate the literature set, with increasing qualitative research efforts. Grand theories are seldomly addressed in the studies. Blockchain technology is outlined as particularly useful when combined with other technologies like IoT. We also identified sustainability implications of the technology, such as enabling transparency for SC stakeholders. Cryptocurrencies can facilitate further efficiency gains if legal uncertainties are reduced. The study is concluded with managerial and theoretical implications and future research opportunities.
Collapse
|
10
|
Understanding the Mechanisms That Drive Phage Resistance in Staphylococci to Prevent Phage Therapy Failure. Viruses 2022; 14:v14051061. [PMID: 35632803 PMCID: PMC9146914 DOI: 10.3390/v14051061] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
Despite occurring at the microscopic scale, the armed race between phages and their bacterial hosts involves multiple mechanisms, some of which are just starting to be understood. On the one hand, bacteria have evolved strategies that can stop the viral infection at different stages (adsorption, DNA injection and replication, biosynthesis and assembly of the viral progeny and/or release of the newly formed virions); on the other, phages have gradually evolved counterattack strategies that allow them to continue infecting their prey. This co-evolutionary process has played a major role in the development of microbial populations in both natural and man-made environments. Notably, understanding the parameters of this microscopic war will be paramount to fully benefit from the application of phage therapy against dangerous, antibiotic-resistant human pathogens. This review gathers the current knowledge regarding the mechanisms of phage resistance in the Staphylococcus genus, which includes Staphylococcus aureus, one of the most concerning microorganisms in terms of antibiotic resistance acquisition. Some of these strategies involve permanent changes to the bacterial cell via mutations, while others are transient, adaptive changes whose expression depends on certain environmental cues or the growth phase. Finally, we discuss the most plausible strategies to limit the impact of phage resistance on therapy, with a special emphasis on the importance of a rational design of phage cocktails in order to thwart therapeutic failure.
Collapse
|
11
|
Essghaier B, Toukabri N, Dridi R, Hannachi H, Limam I, Mottola F, Mokni M, Zid MF, Rocco L, Abdelkarim M. First Report of the Biosynthesis and Characterization of Silver Nanoparticles Using Scabiosa atropurpurea subsp. maritima Fruit Extracts and Their Antioxidant, Antimicrobial and Cytotoxic Properties. NANOMATERIALS 2022; 12:nano12091585. [PMID: 35564294 PMCID: PMC9104986 DOI: 10.3390/nano12091585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023]
Abstract
Candida and dermatophyte infections are difficult to treat due to increasing antifungal drugs resistance such as fluconazole, as well as the emergence of multi-resistance in clinical bacteria. Here, we first synthesized silver nanoparticles using aqueous fruit extracts from Scabiosa atropurpurea subsp. maritima (L.). The characterization of the AgNPs by means of UV, XRD, FTIR, and TEM showed that the AgNPs had a uniform spherical shape with average sizes of 40–50 nm. The biosynthesized AgNPs showed high antioxidant activity when investigated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The AgNPs displayed strong antibacterial potential expressed by the maximum zone inhibition and the lowest MIC and MBC values. The AgNPs revealed a significant antifungal effect against the growth and biofilm of Candida species. In fact, the AgNPs were efficient against Trichophyton rubrum, Trichophyton interdigitale, and Microsporum canis. The antifungal mechanisms of action of the AgNPs seem to be due to the disruption of membrane integrity and a reduction in virulence factors (biofilm and hyphae formation and a reduction in germination). Finally, the silver nanoparticles also showed important cytotoxic activity against the human multiple myeloma U266 cell line and the human breast cancer cell line MDA-MB-231. Therefore, we describe new silver nanoparticles with promising biomedical application in the development of novel antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Department of Biology, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia
- Correspondence: (B.E.); (L.R.)
| | - Nourchéne Toukabri
- Unité de Mycologie, Laboratoire de Recherche Infections et Santé Publique LR18SP01, Service de Dermatologie et de Vénéréologie, Hôpital La Rabta Jebbari, Tunis 1007, Tunisia; (N.T.); (M.M.)
| | - Rihab Dridi
- Laboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Department of Chimie, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia; (R.D.); (M.F.Z.)
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint LR18ES04, Department of Biology, Faculty of Science, University of Tunis El Manar II, Tunis 2092, Tunisia;
| | - Inès Limam
- Laboratory of Oncohematology, PRF of Oncohematology, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1006, Tunisia; (I.L.); (M.A.)
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “L. Vanvitelli”, 81100 Caserta, Italy;
| | - Mourad Mokni
- Unité de Mycologie, Laboratoire de Recherche Infections et Santé Publique LR18SP01, Service de Dermatologie et de Vénéréologie, Hôpital La Rabta Jebbari, Tunis 1007, Tunisia; (N.T.); (M.M.)
| | - Mohamed Faouzi Zid
- Laboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Department of Chimie, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia; (R.D.); (M.F.Z.)
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “L. Vanvitelli”, 81100 Caserta, Italy;
- Correspondence: (B.E.); (L.R.)
| | - Mohamed Abdelkarim
- Laboratory of Oncohematology, PRF of Oncohematology, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1006, Tunisia; (I.L.); (M.A.)
| |
Collapse
|
12
|
The Sustainable Efficiency Improvement of Internet Companies under the Background of Digital Transformation. SUSTAINABILITY 2022. [DOI: 10.3390/su14095600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The digital economy is a driving force for economic growth in various countries. When the digital economy is deeply integrated with Internet companies, it also brings about great challenges to corporate innovation. This paper used the DEA-Malmquist model to measure the efficiency of the science and technology investment of 30 Internet-listed companies in China from 2011 to 2019, constructing a long-distance function and displaying the dynamic changes in the comparative efficiency of time and space. This research evaluated the digital maturity and digital experience of Internet companies under the continuous investment of science and technology, concluding that the investment in science and technology under the digital economy can improve the innovation efficiency of China’s Internet companies. Research shows that technology investment has a significant positive impact on the digitalization of Internet companies, but there is heterogeneity among different companies. Based on the theoretical research in this article and the empirical experience of in-depth digitalization, it also provides path suggestions for the in-depth development of digitalization of Internet companies. This research has important theoretical significance and practical value for further promoting the development of Internet companies and promoting the application of the digital economy.
Collapse
|
13
|
Georgeanu VA, Mămuleanu M, Ghiea S, Selișteanu D. Malignant Bone Tumors Diagnosis Using Magnetic Resonance Imaging Based on Deep Learning Algorithms. Medicina (B Aires) 2022; 58:medicina58050636. [PMID: 35630053 PMCID: PMC9147948 DOI: 10.3390/medicina58050636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Malignant bone tumors represent a major problem due to their aggressiveness and low survival rate. One of the determining factors for improving vital and functional prognosis is the shortening of the time between the onset of symptoms and the moment when treatment starts. The objective of the study is to predict the malignancy of a bone tumor from magnetic resonance imaging (MRI) using deep learning algorithms. Materials and Methods: The cohort contained 23 patients in the study (14 women and 9 men with ages between 15 and 80). Two pretrained ResNet50 image classifiers are used to classify T1 and T2 weighted MRI scans. To predict the malignancy of a tumor, a clinical model is used. The model is a feed forward neural network whose inputs are patient clinical data and the output values of T1 and T2 classifiers. Results: For the training step, the accuracies of 93.67% for the T1 classifier and 86.67% for the T2 classifier were obtained. In validation, both classifiers obtained 95.00% accuracy. The clinical model had an accuracy of 80.84% for training phase and 80.56% for validation. The receiver operating characteristic curve (ROC) of the clinical model shows that the algorithm can perform class separation. Conclusions: The proposed method is based on pretrained deep learning classifiers which do not require a manual segmentation of the MRI images. These algorithms can be used to predict the malignancy of a tumor and on the other hand can shorten the time of their diagnosis and treatment process. While the proposed method requires minimal intervention from an imagist, it needs to be tested on a larger cohort of patients.
Collapse
Affiliation(s)
- Vlad Alexandru Georgeanu
- Department of General Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Orthopaedics and Trauma Surgery Department, “St. Pantelimon” Hospital, 021659 Bucharest, Romania
| | - Mădălin Mămuleanu
- Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania;
- Oncometrics S.R.L., 200677 Craiova, Romania
- Correspondence: ; Tel.: +40-762-893-723
| | | | - Dan Selișteanu
- Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania;
| |
Collapse
|
14
|
Origin of Baseline Drift in Metal Oxide Gas Sensors: Effects of Bulk Equilibration. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metal oxide (MOX) gas sensors and gas sensor arrays are widely used to detect toxic, combustible, and corrosive gases and gas mixtures inside ambient air. Important but poorly researched effects counteracting reliable detection are the phenomena of sensor baseline drift and changes in gas response upon long-term operation of MOX gas sensors. In this paper, it is shown that baseline drift is not limited to materials with poor crystallinity, but that this phenomenon principally also occurs in materials with almost perfect crystalline order. Building on this result, a theoretical framework for the analysis of such phenomena is developed. This analysis indicates that sensor drift is caused by the slow annealing of quenched-in non-equilibrium oxygen-vacancy donors as MOX gas sensors are operated at moderate temperatures for prolonged periods of time. Most interestingly, our analysis predicts that sensor drift in n-type MOX materials can potentially be mitigated or even suppressed by doping with metal impurities with chemical valences higher than those of the core metal constituents of the host crystals.
Collapse
|