1
|
Vishwakarma S, Tiwari OS, Shukla R, Gazit E, Makam P. Amyloid inspired single amino acid (phenylalanine)-based supramolecular functional assemblies: from disease to device applications. Chem Soc Rev 2025; 54:465-483. [PMID: 39585081 DOI: 10.1039/d4cs00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In the evolving landscape of biomolecular supramolecular chemistry, recent studies on phenylalanine (Phe) have revealed important insights into the versatile nature of this essential aromatic amino acid. Phe can spontaneously self-assemble into fibrils with amyloid-like properties linked to the neurological disorder phenylketonuria (PKU). Apart from its pathological implications, Phe also displays complex phase behavior and can undergo structural changes in response to external stimuli. Its ability to co-assemble with other amino acids opens up new possibilities for studying biomolecular interactions. Furthermore, Phe's coordination with metal ions has led to the development of enzyme-mimicking catalytic systems for applications in organic chemistry, environmental monitoring, and healthcare. Research on L and D enantiomers of Phe, particularly on bio-MOFs, has highlighted their potential in advanced technologies, including bioelectronic devices. This review provides a comprehensive overview of the advancements in Phe-based supramolecular assemblies, emphasizing their interdisciplinary relevance. The Phe assemblies show great potential for future therapeutic and functional biomaterial developments, from disease treatments to innovations in bionanozymes and bioelectronics. This review presents a compelling case for the ongoing exploration of Phe's biomolecular supramolecular chemistry as a fundamental framework for developing sustainable and efficient methodologies across various scientific disciplines.
Collapse
Affiliation(s)
- Subrat Vishwakarma
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| | - Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ruchi Shukla
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Pandeeswar Makam
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| |
Collapse
|
2
|
Bhattacharya I, Saha R, Pyne S, Bera A, Mitra RK. Excipient Induced Unusual Phase Separation in Bovine Serum Albumin Solution: An Explicit Role Played by Ion-Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25822-25833. [PMID: 39575889 DOI: 10.1021/acs.langmuir.4c02802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
We report an instantaneous room-temperature phase separation of 1 mM bovine serum albumin solution in the presence of (20% acetic acid+0.2 M NaCl), a routinely used food preservative; an opaque liquid-like phase (L) coexists in equilibrium with a granular gel like phase (G). Interestingly, neither 20% acetic acid nor 0.2 M NaCl individually induces such a phase separation. Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) imaging show aggregated proteins to be dispersed in the upper phase, while the lower phase is composed of cross-linked fibrils (hydrogels). Mid-IR FTIR, Raman scattering, and circular dichroism (CD) experiments reveal a significant increase in the β-sheet content in BSA, which confirms the formation of amyloids in the presence of the excipient. Both L and G phases undergo distinct visual and microscopic changes upon incubation at 25 and 80 °C. It is evident that the added salt plays a pivotal role in bringing about this otherwise unique phase behavior. We divulge the explicit role of the ion associated hydration using THz-FTIR measurements in the 1.5-16.7 THz (50-550 cm-1) frequency window. Systematic alteration in the ion-induced THz-active mode of water envisions the key role of ions in shaping the various phases. Our study depicts an intriguing observation of severe amyloidosis of BSA upon the addition of a food preservative, even at room temperature, which is expected to add new insight into amyloid research. Considering the increasing number of individuals suffering from several neurodegenerative disorders (Alzheimer's, Parkinson's, type-2 diabetes, obesity, cancer, etc.), this study leads a caution toward critically revisiting the usage of known food preservatives.
Collapse
Affiliation(s)
- Indrani Bhattacharya
- Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India
| | - Ria Saha
- Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India
| | - Sumana Pyne
- Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India
| | - Asesh Bera
- Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India
| | - Rajib Kumar Mitra
- Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India
| |
Collapse
|
3
|
Chibh S, Singh A, Finkelstein-Zuta G, Koren G, Sorkin R, Beck R, Rencus-Lazar S, Gazit E. Amylum forms typical self-assembled amyloid fibrils. SCIENCE ADVANCES 2024; 10:eadp6471. [PMID: 39213351 PMCID: PMC11364109 DOI: 10.1126/sciadv.adp6471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Amyloid fibril formation is a central biochemical process in pathology and physiology. Over decades, substantial advances were made in elucidating the mechanisms of amyloidogenesis, its links to disease, and the production of functional supramolecular structures. While the term "amyloid" denotes starch-like features of these assemblies, no evidence of amyloidogenic behavior of polysaccharides has been so far reported. Here, we investigate the potential of amylum (starch) not only to self-assemble into hierarchical fibrillar structures but also to exhibit canonical amyloidogenic properties. Ordered amylum structures were formed through a sigmoidal growth process with characteristic amyloid features including typical nanofibril morphology, binding to indicative dyes, inherent luminescence, apple-green birefringence upon Congo red staining, and notable mechanical rigidity. These findings shed light on polysaccharide self-assembly and expand the generic amyloid phenomenon.
Collapse
Affiliation(s)
- Sonika Chibh
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ashmeet Singh
- Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Gal Finkelstein-Zuta
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Koren
- The Raymond & Beverly Sackler School of Physics and Astronomy, The Center for Nanoscience and Nanotechnology, and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University; Tel Aviv, 6997801, Israel
- Center of Physics and Chemistry of Living Systems, Tel Aviv University; Tel Aviv, 6997801, Israel
| | - Roy Beck
- The Raymond & Beverly Sackler School of Physics and Astronomy, The Center for Nanoscience and Nanotechnology, and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Alghrably M, Bennici G, Szczupaj G, Alasmael N, Qutub S, Maatouk B, Chandra K, Nowakowski M, Emwas AH, Jaremko M. Exploring the central region of amylin and its analogs aggregation: the influence of metal ions and residue substitutions. Front Chem 2024; 12:1419019. [PMID: 39072260 PMCID: PMC11272978 DOI: 10.3389/fchem.2024.1419019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/28/2024] [Indexed: 07/30/2024] Open
Abstract
Human amylin (hIAPP) is found in the form of amyloid deposits within the pancreatic cells of nearly all patients diagnosed with type 2 diabetes mellitus (T2DM). However, rat amylin (rIAPP) and pramlintide - hIAPP analogs - are both non-toxic and non-amyloidogenic. Their primary sequences exhibit only slight variations in a few amino acid residues, primarily concentrated in the central region, spanning residues 20 to 29. This inspired us to study this fragment and investigate the impact on the aggregation properties of substituting residues within the central region of amylin and its analogs. Six fragments derived from amylin have undergone comprehensive testing against various metal ions by implementing a range of analytical techniques, including Nuclear Magnetic Resonance (NMR) spectroscopy, Thioflavin T (ThT) assays, Atomic Force Microscopy (AFM), and cytotoxicity assays. These methodologies serve to provide a thorough understanding of how the substitutions and interactions with metal ions impact the aggregation behavior of amylin and its analogs.
Collapse
Affiliation(s)
- Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Giulia Bennici
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gabriela Szczupaj
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warszawa, Poland
| | - Noura Alasmael
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Somayah Qutub
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Batoul Maatouk
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kousik Chandra
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Michal Nowakowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warszawa, Poland
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Ismail M, Kanapathipillai M. Novel Ultrasound-Responsive Amyloid Formulation. Pharmaceuticals (Basel) 2024; 17:777. [PMID: 38931443 PMCID: PMC11206591 DOI: 10.3390/ph17060777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Amyloid aggregates have attracted significant interest in regard to diverse biomedical applications, particularly in the field of drug delivery. Here, we report novel amyloid aggregates based on a 12-amino-acid peptide from the amyloidogenic region of the receptor-interacting kinase 3 (RIP3) protein and a thermoresponsive triblock copolymer, namely, Pluronic F127 (RIP3/F127). Physicochemical characterization was performed to determine the aggregation size, morphology, and stimuli-responsive properties. The potential of the aggregates as a drug depot was assessed in lung cancer cells, using Doxorubicin (Dox) as a model drug. The results show that RIP3 and RIP3/F127 exhibit amyloidogenic properties. Further, the RIP3/F127 amyloids exhibited significant ultrasound-responsive properties compared to amyloid aggregates without Pluronic F127. Moreover, the RIP3/F127/Dox amyloid formulations that were subjected to ultrasound treatment exhibited greater toxicity to lung cancer cells compared to that of Dox alone at equal concentrations. Overall, the results from this proof-of-concept study show that amyloidogenic peptide aggregates with stimuli-responsive properties can be utilized as efficient drug delivery depots.
Collapse
|
6
|
Dabirmanesh B, Khajeh K, Uversky VN. The hidden world of protein aggregation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:473-494. [PMID: 38811088 DOI: 10.1016/bs.pmbts.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Though the book's journey into The Hidden World of Protein Aggregation has come to an end, the search for knowledge, the development of healthier lives, and the discovery of nature's mysteries continue, promising new horizons and discoveries yet to be discovered. The intricacies of protein misfolding and aggregation remain a mystery in cellular biology, despite advances made in unraveling them. In this chapter, we will summarize the specific conclusions from the previous chapters and explore the persistent obstacles and unanswered questions that motivate scientists to pursue exploration of protein misfolding and aggregation.
Collapse
Affiliation(s)
- Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
7
|
Nabi Afjadi M, Aziziyan F, Farzam F, Dabirmanesh B. Biotechnological applications of amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:435-472. [PMID: 38811087 DOI: 10.1016/bs.pmbts.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein aggregates and amyloid fibrils have special qualities and are used in a variety of biotechnological applications. They are extensively employed in bioremediation, biomaterials, and biocatalysis. Because of their capacity to encapsulate and release pharmaceuticals and their sensitivity to certain molecules, respectively, they are also used in drug delivery and biosensor applications. They have also demonstrated potential in the domains of food and bioremediation. Additionally, amyloid peptides have drawn interest in biological applications, especially in the investigation of illnesses like Parkinson's and Alzheimer's. The unique characteristics of amyloid fibrils, namely their mechanical strength and β-sheet structure, make them adaptable to a wide range of biotechnological uses. Even with their promise, one important factor to keep in mind before widely using modified amyloid materials is their potential toxicity. Thus, current research aims to overcome safety concerns while maximizing their potential.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Farzam F, Dabirmanesh B. Experimental techniques for detecting and evaluating the amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:183-227. [PMID: 38811081 DOI: 10.1016/bs.pmbts.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Amyloid fibrils are insoluble proteins with intricate β-sheet structures associated with various human diseases, including Parkinson's, Alzheimer's, and prion diseases. Proteins can form aggregates when their structure is misfolded, resulting in highly organized amyloid fibrils or amorphous aggregates. The formation of protein aggregates is a promising research field for mitigating diseases and the pharmaceutical and food industries. It is important to monitor and minimize the appearance of aggregates in these protein products. Several methods exist to assess protein aggregation, that includes from basic investigations to advanced biophysical techniques. Physicochemical parameters such as molecular weight, conformation, structure, and dimension are examined to study aggregation. There is an urgent need to develop methods for the detection of protein aggregation and amyloid fibril formation both in vitro and in vivo. This chapter focuses on a comprehensive discussion of the methods used to characterize and evaluate aggregates and amyloid fibrils.
Collapse
Affiliation(s)
- Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Abdelrahman S, Ge R, Susapto HH, Liu Y, Samkari F, Moretti M, Liu X, Hoehndorf R, Emwas AH, Jaremko M, Rawas RH, Hauser CAE. The Impact of Mechanical Cues on the Metabolomic and Transcriptomic Profiles of Human Dermal Fibroblasts Cultured in Ultrashort Self-Assembling Peptide 3D Scaffolds. ACS NANO 2023; 17:14508-14531. [PMID: 37477873 DOI: 10.1021/acsnano.3c01176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Cells' interactions with their microenvironment influence their morphological features and regulate crucial cellular functions including proliferation, differentiation, metabolism, and gene expression. Most biological data available are based on in vitro two-dimensional (2D) cellular models, which fail to recapitulate the three-dimensional (3D) in vivo systems. This can be attributed to the lack of cell-matrix interaction and the limitless access to nutrients and oxygen, in contrast to in vivo systems. Despite the emergence of a plethora of 3D matrices to address this challenge, there are few reports offering a proper characterization of these matrices or studying how the cell-matrix interaction influences cellular metabolism in correlation with gene expression. In this study, two tetrameric ultrashort self-assembling peptide sequences, FFIK and FIIK, were used to create in vitro 3D models using well-described human dermal fibroblast cells. The peptide sequences are derived from naturally occurring amino acids that are capable of self-assembling into stable hydrogels without UV or chemical cross-linking. Our results showed that 2D cultured fibroblasts exhibited distinct metabolic and transcriptomic profiles compared to 3D cultured cells. The observed changes in the metabolomic and transcriptomic profiles were closely interconnected and influenced several important metabolic pathways including the TCA cycle, glycolysis, MAPK signaling cascades, and hemostasis. Data provided here may lead to clearer insights into the influence of the surrounding microenvironment on human dermal fibroblast metabolic patterns and molecular mechanisms, underscoring the importance of utilizing efficient 3D in vitro models to study such complex mechanisms.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Rui Ge
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yang Liu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Faris Samkari
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Manola Moretti
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xinzhi Liu
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Ranim H Rawas
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
10
|
Mohd Nor Ihsan NS, Abdul Sani SF, Looi LM, Cheah PL, Chiew SF, Pathmanathan D, Bradley DA. A review: Exploring the metabolic and structural characterisation of beta pleated amyloid fibril in human tissue using Raman spectrometry and SAXS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00059-7. [PMID: 37307955 DOI: 10.1016/j.pbiomolbio.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/12/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Amyloidosis is a deleterious condition caused by abnormal amyloid fibril build-up in living tissues. To date, 42 proteins that are linked to amyloid fibrils have been discovered. Amyloid fibril structure variation can affect the severity, progression rate, or clinical symptoms of amyloidosis. Since amyloid fibril build-up is the primary pathological basis for various neurodegenerative illnesses, characterization of these deadly proteins, particularly utilising optical techniques have been a focus. Spectroscopy techniques provide significant non-invasive platforms for the investigation of the structure and conformation of amyloid fibrils, offering a wide spectrum of analyses ranging from nanometric to micrometric size scales. Even though this area of study has been intensively explored, there still remain aspects of amyloid fibrillization that are not fully known, a matter hindering progress in treating and curing amyloidosis. This review aims to provide recent updates and comprehensive information on optical techniques for metabolic and proteomic characterization of β-pleated amyloid fibrils found in human tissue with thorough literature analysis of publications. Raman spectroscopy and SAXS are well established experimental methods for study of structural properties of biomaterials. With suitable models, they offer extended information for valid proteomic analysis under physiologically relevant conditions. This review points to evidence that despite limitations, these techniques are able to provide for the necessary output and proteomics indication in order to extrapolate the aetiology of amyloid fibrils for reliable diagnostic purposes. Our metabolic database may also contribute to elucidating the nature and function of the amyloid proteome in development and clearance of amyloid diseases.
Collapse
Affiliation(s)
- N S Mohd Nor Ihsan
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S F Abdul Sani
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - L M Looi
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - P L Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S F Chiew
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dharini Pathmanathan
- Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - D A Bradley
- Centre for Applied Physics and Radiation Technologies, Sunway University, 46150 PJ, Malaysia; Department of Physics, School of Mathematics & Physics, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
11
|
Chen D, Liu X, Chen Y, Lin H. Amyloid peptides with antimicrobial and/or microbial agglutination activity. Appl Microbiol Biotechnol 2022; 106:7711-7720. [PMID: 36322251 PMCID: PMC9628408 DOI: 10.1007/s00253-022-12246-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Microbe (including bacteria, fungi, and virus) infection in brains is associated with amyloid fibril deposit and neurodegeneration. Increasing findings suggest that amyloid proteins, like Abeta (Aβ), are important innate immune effectors in preventing infections. In some previous studies, amyloid peptides have been linked to antimicrobial peptides due to their common mechanisms in membrane-disruption ability, while the other mechanisms of bactericidal protein aggregation and protein function knockdown are less discussed. Besides, another important function of amyloid peptides in pathogen agglutination is rarely illustrated. In this review, we summarized and divided the different roles and mechanisms of amyloid peptides against microbes in antimicrobial activity and microbe agglutination activity. Besides, the range of amyloids' antimicrobial spectrum, the effectiveness of amyloid peptide states (monomers, oligomers, and fibrils), and cytotoxicity are discussed. The good properties of amyloid peptides against microbes might provide implications for the development of novel antimicrobial drug. KEY POINTS: • Antimicrobial and/or microbial agglutination is a characteristic of amyloid peptides. • Various mechanisms of amyloid peptides against microbes are discovered recently. • Amyloid peptides might be developed into novel antimicrobial drugs.
Collapse
Affiliation(s)
- Dongru Chen
- Department of Orthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Xiangqi Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Yucong Chen
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Huancai Lin
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Zheng T, Huo Y, Wang Y, Du W. Regulation of oxaliplatin and carboplatin on the assembly behavior and cytotoxicity of human islet amyloid polypeptide. J Inorg Biochem 2022; 237:111989. [PMID: 36108345 DOI: 10.1016/j.jinorgbio.2022.111989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) is associated with the pathology of Type II diabetes (T2DM) due to its misfolding and amyloid deposition. The peptide is widely concerned as a potential drug target, and the prevention of hIAPP fibrillation is a rational therapeutic strategy for T2DM. Platinum complexes are promising anticancer agents with good biocompatibility, they can resist the aggregation of amyloid peptides, while the effects of oxaliplatin and carboplatin on hIAPP fibrillation are unknown. In the present work, we selected the two platinum drugs to reveal their inhibition and disaggregation against hIAPP fibrillation by various biophysical methods. The two complexes impeded hIAPP fibril formation and dispersed the aggregates into small oligomers and most monomers. They also reduced peptides oligomerization and promoted rat insulinoma β-cells viability. They bound to hIAPP mainly through metal coordination and hydrophobic interactions. Moreover, oxaliplatin showed better inhibition and regulation on peptides aggregation and cytotoxicity than carboplatin. This work is of important biomedical values for clinical platinum drugs against T2DM and other amyloidosis related diseases.
Collapse
Affiliation(s)
- Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
13
|
Catalini S, Lutz-Bueno V, Usuelli M, Diener M, Taschin A, Bartolini P, Foggi P, Paolantoni M, Mezzenga R, Torre R. Multi-length scale structural investigation of lysozyme self-assembly. iScience 2022; 25:104586. [PMID: 35784788 PMCID: PMC9240868 DOI: 10.1016/j.isci.2022.104586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Reactive amyloid oligomers are responsible for cytotoxicity in amyloid pathologies and because of their unstable nature characterizing their behavior is a challenge. The physics governing the self-assembly of proteins in crowded conditions is extremely complex and its comprehension, despite its paramount relevance to understanding molecular mechanisms inside cells and optimizing pharmaceutical processes, remains inconclusive. Here, we focus on the amyloid oligomerization process in self-crowded lysozyme aqueous solutions in acidic conditions. We reveal that the amyloid oligomers form at high protein concentration and low pH. Through multi-length scale spectroscopic investigations, we find that amyloid oligomers can further interconnect with each other by weak and non-specific interactions forming an extended network that leads to the percolation of the whole system. Our multi-length scale structural analysis follows the thermal history of amyloid oligomers from different perspectives and highlights the impact of hierarchical self-assembly of biological macromolecules on functional properties. Use of multi-length scale spectroscopies to characterize unstable amyloid oligomers Lysozyme form thermo-labile amyloid oligomers in self-crowded conditions Amyloid oligomers interact and form an extended hydrogel network Amyloid oligomers are responsible for the existence of the hydrogel matrix
Collapse
|
14
|
Seira Curto J, Surroca Lopez A, Casals Sanchez M, Tic I, Fernandez Gallegos MR, Sanchez de Groot N. Microbiome Impact on Amyloidogenesis. Front Mol Biosci 2022; 9:926702. [PMID: 35782871 PMCID: PMC9245625 DOI: 10.3389/fmolb.2022.926702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Our life is closely linked to microorganisms, either through a parasitic or symbiotic relationship. The microbiome contains more than 1,000 different bacterial species and outnumbers human genes by 150 times. Worryingly, during the last 10 years, it has been observed a relationship between alterations in microbiota and neurodegeneration. Several publications support the hypothesis that amyloid structures formed by microorganisms may trigger host proteins aggregation. In this review, we collect pieces of evidence supporting that the crosstalk between human and microbiota amyloid proteins could be feasible and, probably, a more common event than expected before. The combination of their outnumbers, the long periods of time that stay in our bodies, and the widespread presence of amyloid proteins in the bacteria Domain outline a worrying scenario. However, the identification of the exact microorganisms and the mechanisms through with they can influence human disease also opens the door to developing a new and diverse set of therapeutic strategies.
Collapse
|
15
|
Dhahri M, Alghrably M, Mohammed HA, Badshah SL, Noreen N, Mouffouk F, Rayyan S, Qureshi KA, Mahmood D, Lachowicz JI, Jaremko M, Emwas AH. Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases. Pharmaceutics 2021; 14:1. [PMID: 35056897 PMCID: PMC8777698 DOI: 10.3390/pharmaceutics14010001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases are a serious and widespread global public health burden amongst aging populations. The total estimated worldwide global cost of dementia was US$818 billion in 2015 and has been projected to rise to 2 trillion US$ by 2030. While advances have been made to understand different neurodegenerative disease mechanisms, effective therapeutic strategies do not generally exist. Several drugs have been proposed in the last two decades for the treatment of different types of neurodegenerative diseases, with little therapeutic benefit, and often with severe adverse and side effects. Thus, the search for novel drugs with higher efficacy and fewer drawbacks is an ongoing challenge in the treatment of neurodegenerative disease. Several natural compounds including polysaccharides have demonstrated neuroprotective and even therapeutic effects. Natural polysaccharides are widely distributed in plants, animals, algae, bacterial and fungal species, and have received considerable attention for their wide-ranging bioactivity, including their antioxidant, anti-neuroinflammatory, anticholinesterase and anti-amyloidogenic effects. In this review, we summarize different mechanisms involved in neurodegenerative diseases and the neuroprotective effects of natural polysaccharides, highlighting their potential role in the prevention and therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Noreen Noreen
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Fouzi Mouffouk
- Department of Chemistry, Faculty of Science, Kuwait University, Safat 13060, Kuwait;
| | - Saleh Rayyan
- Chemistry Department, Birzeit University, Birzeit P627, Palestine;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
16
|
Living with the enemy: from protein-misfolding pathologies we know, to those we want to know. Ageing Res Rev 2021; 70:101391. [PMID: 34119687 DOI: 10.1016/j.arr.2021.101391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Conformational diseases are caused by the aggregation of misfolded proteins. The risk for such pathologies develops years before clinical symptoms appear, and is higher in people with alpha-1 antitrypsin (AAT) polymorphisms. Thousands of people with alpha-1 antitrypsin deficiency (AATD) are underdiagnosed. Enemy-aggregating proteins may reside in these underdiagnosed AATD patients for many years before a pathology for AATD fully develops. In this perspective review, we hypothesize that the AAT protein could exert a new and previously unconsidered biological effect as an endogenous metal ion chelator that plays a significant role in essential metal ion homeostasis. In this respect, AAT polymorphism may cause an imbalance of metal ions, which could be correlated with the aggregation of amylin, tau, amyloid beta, and alpha synuclein proteins in type 2 diabetes mellitus (T2DM), Alzheimer's and Parkinson's diseases, respectively.
Collapse
|
17
|
Peccati F, Sodupe M. Atomistic insights into the structure of heptapeptide nanofibers. J Chem Phys 2021; 155:055101. [PMID: 34364337 DOI: 10.1063/5.0048988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Artificial amyloid-like nanofibers formed from short peptides are emerging as new supramolecular structures for catalysis and advanced materials. In this work, we analyze, by means of computational approaches, the preferred atomistic fibrillar architectures that result from the self-assembly of polar NY7, NF7, SY7, SF7, and GY7 peptides into steric zippers formed by two β-sheets (describing an individual steric zipper) and by four β-sheets. For all heptapeptides, except GY7, parallel β-sheet organizations with polar residues packed at the steric zipper appear to be the preferred assemblies for the two β-sheets system due to the formation of a strong network of hydrogen bonds. For GY7, however, an antiparallel organization with glycine at the steric zipper is the most stable one. The preferred architecture is mostly conserved when enlarging our model from two to four β-sheets. The present work shows that the relative stability of different architectures results from a delicate balance between peptide composition, side chain hydrophobicity, and non-covalent interactions at the interface and provides the basis for a rational design of new improved artificial prion-inspired materials.
Collapse
Affiliation(s)
- Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
18
|
de Mello LR, Porosk L, Lourenço TC, Garcia BBM, Costa CAR, Han SW, de Souza JS, Langel Ü, da Silva ER. Amyloid-like Self-Assembly of a Hydrophobic Cell-Penetrating Peptide and Its Use as a Carrier for Nucleic Acids. ACS APPLIED BIO MATERIALS 2021; 4:6404-6416. [PMID: 35006917 DOI: 10.1021/acsabm.1c00601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a topical subject potentially exploitable for creating nanotherapeutics for the delivery of bioactive loads. These compounds are often classified into three major categories according to their physicochemical characteristics: cationic, amphiphilic, and hydrophobic. Among them, the group of hydrophobic CPPs has received increasing attention in recent years due to toxicity concerns posed by highly cationic CPPs. The hexapeptide PFVYLI (P, proline; F, phenylalanine; V, valine; Y, tyrosine; L, leucine; and I, isoleucine), a fragment derived from the C-terminal portion of α1-antitrypsin, is a prototypal example of hydrophobic CPP. This sequence shows reduced cytotoxicity and a capacity of nuclear localization, and its small size readily hints at its suitability as a building block to construct nanostructured materials. In this study, we examine the self-assembling properties of PFVYLI and investigate its ability to form noncovalent complexes with nucleic acids. By using a combination of biophysical tools including synchrotron small-angle X-ray scattering and atomic force microscopy-based infrared spectroscopy, we discovered that this CPP self-assembles into discrete nanofibrils with remarkable amyloidogenic features. Over the course of days, these fibrils coalesce into rodlike crystals that easily reach the micrometer range. Despite lacking cationic residues in the composition, PFVYLI forms noncovalent complexes with nucleic acids that retain β-sheet pairing found in amyloid aggregates. In vitro vectorization experiments performed with double-stranded DNA fragments indicate that complexes promote the internalization of nucleic acids, revealing that tropism toward cell membranes is preserved upon complexation. On the other hand, transfection assays with splice-correction oligonucleotides (SCOs) for luciferase expression show limited bioactivity across a narrow concentration window, suggesting that the propensity to form amyloidogenic aggregates may trigger endosomal entrapment. We anticipate that the findings presented here open perspectives for using this archetypical hydrophobic CPP in the fabrication of nanostructured scaffolds, which potentially integrate properties of amyloids and translocation capabilities of CPPs.
Collapse
Affiliation(s)
- Lucas R de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ly Porosk
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Thiago C Lourenço
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Bianca B M Garcia
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Carlos A R Costa
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-861, Brazil
| | - Sang W Han
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Juliana S de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210580, Brazil
| | - Ülo Langel
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden
| | - Emerson R da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
19
|
Divakara MB, Ashwini R, Santosh MS, Priyanka M, Ravikumar CR, Viswanatha R, Murthy HCA. Early-stage culprit in protein misfolding diseases investigated using electrochemical parameters: New insights over peptide-membrane interactions. Biomed Pharmacother 2021; 142:111964. [PMID: 34329823 DOI: 10.1016/j.biopha.2021.111964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The dysfunctioning of β-cells caused by the unspecific misfolding of the human islet amyloid polypeptide (hIAPP) at the membrane results in type 2 diabetes mellitus. Here, we report for the first time, the early-stage interaction of hIAPP oligomers on the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) lipid membrane using electrochemical parameters. Electrochemical techniques are better than other techniques to detect hIAPP at significantly lower concentrations. The surface level interactions between the peptide (hIAPP) and lipid membrane (DMPC) were investigated using atomic force microscopy (AFM), confocal microscopy (CM) and electrochemical techniques such as Tafel polarization, cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Inserting IAPP into the fluid domains results in breaking the lipid-to-lipid interaction, leading to restriction of membrane mobility. The SLateral values of the liposome and IAPP co-solubilized liposome indicates the cooperative insertion of IAPP. Further, a new method of immobilizing a membrane to the gold surface has been employed, resulting in an electrical contact with the buffer, preventing the direct utilization of a steady-state voltage across the bilayer. The electrochemical studies revealed that the charge transfer resistance decreased for 3-mercaptopropanoic acid modified gold (MPA-Au) electrode coated with the liposome and after the addition of IAPP, followed by an increase in the capacitance. The present study has opened up new dimensions to the understanding of peptide-membrane interactions and shows different experimental approaches for the future researchers in this domain.
Collapse
Affiliation(s)
- M B Divakara
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology (Affiliated to Visvesvaraya Technological University (VTU), Belgaum), Thataguni, Off Kanakapura Road, Bengaluru 560082, Karnataka, India
| | - R Ashwini
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology (Affiliated to Visvesvaraya Technological University (VTU), Belgaum), Thataguni, Off Kanakapura Road, Bengaluru 560082, Karnataka, India
| | - M S Santosh
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology (Affiliated to Visvesvaraya Technological University (VTU), Belgaum), Thataguni, Off Kanakapura Road, Bengaluru 560082, Karnataka, India.
| | - M Priyanka
- East Point college of Medical Sciences and Research Centre (affiliated to RGUHS), Jnana Prabha, Virgonagar Post, Bidrahalli, Bengaluru 560049, Karnataka, India
| | - C R Ravikumar
- Research Centre, Department of Science, East West Institute of Technology, Bengaluru 560091, India
| | - R Viswanatha
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology (Affiliated to Visvesvaraya Technological University (VTU), Belgaum), Thataguni, Off Kanakapura Road, Bengaluru 560082, Karnataka, India
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia.
| |
Collapse
|
20
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|
21
|
Stellwagen SD, Burns M. Repeat variation resolves a complete aggregate silk sequence of bolas spider Mastophora phrynosoma. Integr Comp Biol 2021; 61:1450-1458. [PMID: 33944935 DOI: 10.1093/icb/icab048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many species of spider use a modified silk adhesive, called aggregate glue, to aid in prey capture. Aggregate spidroins (spider fibroins) are modified members of the spider silk family, however they are not spun into fibers as are their solid silk relatives. The genes that encode for aggregate spidroins are the largest of the known spidroin genes and are similarly highly repetitive. In this study, we used long read sequencing to discover the aggregate spidroin genes of the toad-like bolas spider, Mastophora phrynosoma, which employs the glue in a unique way, using only a single, large droplet to capture moths. While Aggregate Spidroin 1 (AgSp1) remains incomplete, AgSp2 is more than an extraordinary 62 kilobases of coding sequence, 20 kb longer than the longest spidroin on record. The structure of repeats from both aggregate silk proteins follows a similar pattern seen in other species, with the same strict conservation of amino acid residue number for much of the repeats' lengths. Interestingly, AgSp2 lacks the elevated number and groupings of glutamine residues seen in the other reported AgSp2 of a classic orb weaving species. The role of gene length in glue functionality remains a mystery, and thus discovering length differences across species will allow understanding and harnessing of this attribute for the next generation of bio-inspired adhesives.
Collapse
Affiliation(s)
- Sarah D Stellwagen
- Department of Biological Sciences, UNC Charlotte, 9201, University City Blvd, NC 28223, USA
| | - Mercedes Burns
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, MD 21250, USA
| |
Collapse
|
22
|
Bera S, Dong X, Krishnarjuna B, Raab SA, Hales DA, Ji W, Tang Y, Shimon LJ, Ramamoorthy A, Clemmer DE, Wei G, Gazit E. Solid-state packing dictates the unexpected solubility of aromatic peptides. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100391. [PMID: 33928264 PMCID: PMC8063180 DOI: 10.1016/j.xcrp.2021.100391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 05/10/2023]
Abstract
The understanding and prediction of the solubility of biomolecules, even of the simplest ones, reflect an open question and unmet need. Short aromatic tripeptides are among the most highly aggregative biomolecules. However, in marked contrast, Ala-Phe-Ala (AFA) was surprisingly found to be non-aggregative and could be solubilized at millimolar concentrations. Here, aiming to uncover the underlying molecular basis of its high solubility, we explore in detail the solubility, aggregation propensity, and atomic-level structure of the tripeptide. We demonstrate an unexpectedly high water solubility of AFA reaching 672 mM, two orders of magnitude higher than reported previously. The single crystal structure reveals an anti-parallel β sheet conformation devoid of any aromatic interactions. This study provides clear mechanistic insight into the structural basis of solubility and suggests a simple and feasible tool for its estimation, bearing implications for design of peptide drugs, peptides materials, and advancement of peptide nanotechnology.
Collapse
Affiliation(s)
- Santu Bera
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, 200433, People’s Republic of China
| | - Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Shannon A. Raab
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN 47401, USA
| | - David A. Hales
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN 47401, USA
- Department of Chemistry, Hendrix College, Conway, AR 72032, USA
| | - Wei Ji
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, 200433, People’s Republic of China
| | - Linda J.W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN 47401, USA
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, 200433, People’s Republic of China
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
23
|
Functionalized Peptide Fibrils as a Scaffold for Active Substances in Wound Healing. Int J Mol Sci 2021; 22:ijms22083818. [PMID: 33917000 PMCID: PMC8067766 DOI: 10.3390/ijms22083818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022] Open
Abstract
Technological developments in the field of biologically active peptide applications in medicine have increased the need for new methods for peptide delivery. The disadvantage of peptides as drugs is their low biological stability. Recently, great attention has been paid to self-assembling peptides that can form fibrils. Such a formulation makes bioactive peptides more resistant to enzymatic degradation and druggable. Peptide fibrils can be carriers for peptides with interesting biological activities. These features open up prospects for using the peptide fibrils as long-acting drugs and are a valid alternative to conventional peptidic therapies. In our study, we designed new peptide scaffolds that are a hybrid of three interconnected amino acid sequences and are: pro-regenerative, cleavable by neutrophilic elastase, and fibril-forming. We intended to obtain peptides that are stable in the wound environment and that, when applied, would release a biologically active sequence. Our studies showed that the designed hybrid peptides show a high tendency toward regular fibril formation and are able to release the pro-regenerative sequence. Cytotoxicity studies showed that all the designed peptides were safe, did not cause cytotoxic effects and revealed a pro-regenerative potential in human fibroblast and keratinocyte cell lines. In vivo experiments in a dorsal skin injury model in mice indicated that two tested peptides moderately promote tissue repair in their free form. Our research proves that peptide fibrils can be a druggable form and a scaffold for active peptides.
Collapse
|
24
|
Fraczyk A, Janczewski L, Wasko J, Rozniakowski K, Galecki K, Kaminski ZJ, Kolesinska B. Non-Aggregating Amylin Fragments as an Inhibitors of the Aggregation Process of Susceptible to Aggregation Fragments 18-22, 23-27, and 33-37 of Hormone. Chem Biodivers 2021; 18:e2100034. [PMID: 33687147 DOI: 10.1002/cbdv.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 11/10/2022]
Abstract
Amylin aggregation is one of the factors in the development of diabetes mellitus, which is classified as a civilization disease. The aim of this research was to find whether non-aggregating fragments 1-7, 8-12, 13-17 and 28-32 of amylin would inhibit the aggregation of the amyloidogenic cores 18-22, 23-27, 33-37 of hormone. In the study of the inhibitory potential of non-aggregating amylin fragments, a set of independent methods were used to study aggregation properties (spectroscopic and fluorescence studies with the use of indicators, microscopic studies, circular dichroism studies) and the method of prediction of aggregation properties. The performed research allowed to select the cyclic fragment (1-7) H-KCNTATC-OH with disulfide bond as an inhibitor capable of inhibiting the aggregation of all amyloidogenic cores 18-22, 23-27, 33-37 of the hormone. Additionally, it was found that this peptide inhibits insulin hot spot aggregation, which may indicate its universal utility in inhibiting the process of aggregation of hormones regulating carbohydrate metabolism directly related to the development of diabetes. Research on the possibility of the extensive use of the cyclic fragment (1-7) of H-KCNTATC-OH as a peptide inhibitor of the polypeptide/protein aggregation process is ongoing.
Collapse
Affiliation(s)
- Andrzej Fraczyk
- Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego Łódź, 18/22, 90-537, Lodz, Poland
| | - Lukasz Janczewski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Kamil Rozniakowski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Krystian Galecki
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| |
Collapse
|