1
|
Anegkamol W, Kamkang P, Hunthai S, Kaewwongse M, Taweevisit M, Chuaypen N, Rattanachaisit P, Dissayabutra T. The Usefulness of Resistant Maltodextrin and Chitosan Oligosaccharide in Management of Gut Leakage and Microbiota in Chronic Kidney Disease. Nutrients 2023; 15:3363. [PMID: 37571302 PMCID: PMC10420640 DOI: 10.3390/nu15153363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Microbiota-dysbiosis-induced gut leakage is a pathophysiologic change in chronic kidney disease (CKD), leading to the production of several uremic toxins and their absorption into the bloodstream to worsen the renal complications. We evaluate the benefits of resistant maltodextrin (RMD) and chitosan oligosaccharide (COS) supplements in cell culture and CKD-induced rats. The RMD exerted a significant anti-inflammatory effect in vitro and intestinal occludin and zonula occluden-1 up-regulation in CKD rats compared with inulin and COS. While all prebiotics slightly improved gut dysbiosis, RMD remarkably promoted the relative abundance and the combined abundance of Lactobacillus, Bifidobacteria, Akkermansia, and Roseburia in CKD rats. Supplements of RMD should be advantageous in the treatment of gut leakage and microbiota dysbiosis in CKD.
Collapse
Affiliation(s)
- Weerapat Anegkamol
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| | - Panumas Kamkang
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| | - Sittiphong Hunthai
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| | - Maroot Kaewwongse
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Natthaya Chuaypen
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pakkapon Rattanachaisit
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thasinas Dissayabutra
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| |
Collapse
|
2
|
Zhang Y, Daniel EA, Metcalf J, Dai Y, Reif GA, Wallace DP. CaMK4 overexpression in polycystic kidney disease promotes mTOR-mediated cell proliferation. J Mol Cell Biol 2022; 14:6674767. [PMID: 36002021 PMCID: PMC9802383 DOI: 10.1093/jmcb/mjac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive enlargement of fluid-filled cysts, causing nephron loss and a decline in renal function. Mammalian target of rapamycin (mTOR) is overactive in cyst-lining cells and contributes to abnormal cell proliferation and cyst enlargement; however, the mechanism for mTOR stimulation remains unclear. We discovered that calcium/calmodulin (CaM) dependent kinase IV (CaMK4), a multifunctional kinase, is overexpressed in the kidneys of ADPKD patients and PKD mouse models. In human ADPKD cells, CaMK4 knockdown reduced mTOR abundance and the phosphorylation of ribosomal protein S6 kinase (S6K), a downstream target of mTOR. Pharmacologic inhibition of CaMK4 with KN-93 reduced phosphorylated S6K and S6 levels and inhibited cell proliferation and in vitro cyst formation of ADPKD cells. Moreover, inhibition of calcium/CaM-dependent protein kinase kinase-β and CaM, two key upstream regulators of CaMK4, also decreased mTOR signaling. The effects of KN-93 were independent of the liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) pathway, and the combination of KN-93 and metformin, an AMPK activator, had additive inhibitory effects on mTOR signaling and in vitro cyst growth. Our data suggest that increased CaMK4 expression and activity contribute to mTOR signaling and the proliferation of cystic cells of ADPKD kidneys.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Emily A Daniel
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - July Metcalf
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Yuqiao Dai
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Gail A Reif
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | | |
Collapse
|
3
|
Khunpatee N, Bhukhai K, Chatsudthipong V, Yuajit C. Potential Application of Gambogic Acid for Retarding Renal Cyst Progression in Polycystic Kidney Disease. Molecules 2022; 27:3837. [PMID: 35744960 PMCID: PMC9227900 DOI: 10.3390/molecules27123837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/03/2022] Open
Abstract
Abnormal cell proliferation and accumulation of fluid-filled cysts along the nephrons in polycystic kidney disease (PKD) could lead to a decline in renal function and eventual end-stage renal disease (ESRD). Gambogic acid (GA), a xanthone compound extracted from the brownish resin of the Garcinia hanburyi tree, exhibits various pharmacological properties, including anti-inflammation, antioxidant, anti-proliferation, and anti-cancer activity. However, its effect on inhibiting cell proliferation in PKD is still unknown. This study aimed to determine the pharmacological effects and detailed mechanisms of GA in slowing an in vitro cyst growth model of PKD. The results showed that GA (0.25-2.5 μM) significantly retarded MDCK cyst growth and cyst formation in a dose-dependent manner, without cytotoxicity. Using the BrdU cell proliferation assay, it was found that GA (0.5-2.5 μM) suppressed MDCK and Pkd1 mutant cell proliferation. In addition, GA (0.5-2.5 μM) strongly inhibited phosphorylation of ERK1/2 and S6K expression and upregulated the activation of phosphorylation of AMPK, both in MDCK cells and Pkd1 mutant cells. Taken together, these findings suggested that GA could retard MDCK cyst enlargement, at least in part by inhibiting the cell proliferation pathway. GA could be a natural plant-based drug candidate for ADPKD intervention.
Collapse
Affiliation(s)
- Nutchanard Khunpatee
- Biomedical Science Program, College of Medicine and Public Health, Ubon Ratchathani University, Sathonlamark Road, Warin Chamrap, Ubon Ratchathani 34190, Thailand;
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand;
| | - Varanuj Chatsudthipong
- Research Center of Transport Proteins for Medical Innovation, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand;
| | - Chaowalit Yuajit
- College of Medicine and Public Health, Ubon Ratchathani University, Sathonlamark Road, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
4
|
Sacco P, Pedroso-Santana S, Kumar Y, Joly N, Martin P, Bocchetta P. Ionotropic Gelation of Chitosan Flat Structures and Potential Applications. Molecules 2021; 26:660. [PMID: 33513925 PMCID: PMC7865838 DOI: 10.3390/molecules26030660] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
The capability of some polymers, such as chitosan, to form low cost gels under mild conditions is of great application interest. Ionotropic gelation of chitosan has been used predominantly for the preparation of gel beads for biomedical application. Only in the last few years has the use of this method been extended to the fabrication of chitosan-based flat structures. Herein, after an initial analysis of the major applications of chitosan flat membranes and films and their usual methods of synthesis, the process of ionotropic gelation of chitosan and some recently proposed novel procedures for the synthesis of flat structures are presented.
Collapse
Affiliation(s)
- Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy;
| | - Seidy Pedroso-Santana
- Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, 4030000 Concepción, Chile;
| | - Yogesh Kumar
- Department of Physics, ARSD College, University of Delhi, Delhi 110021, India;
| | - Nicolas Joly
- Unité Transformations & Agroressources, Université d’Artois—UniLasalle, ULR7519, F-62408 Béthune, France; (N.J.); (P.M.)
| | - Patrick Martin
- Unité Transformations & Agroressources, Université d’Artois—UniLasalle, ULR7519, F-62408 Béthune, France; (N.J.); (P.M.)
| | - Patrizia Bocchetta
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|