1
|
Suyatno A, Nurfinti WO, Kusuma CPA, Pratama YA, Ardianto C, Samirah Samirah, Rahadiansyah E, Khotib J, Budiatin AS. Effectiveness of Bilayer Scaffold Containing Chitosan/Gelatin/Diclofenac and Bovine Hydroxyapatite on Cartilage/Subchondral Regeneration in Rabbit Joint Defect Models. Adv Pharmacol Pharm Sci 2024; 2024:6987676. [PMID: 39364298 PMCID: PMC11449564 DOI: 10.1155/2024/6987676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024] Open
Abstract
Subchondral defects are often caused by trauma involving cartilage damage, leading to subsequent damage to the underlying bone, specifically the subchondral region. Bilayer scaffolds made from biomaterials, such as bovine hydroxyapatite, possess biocompatible and biodegradable properties that mimic the natural environmental conditions of target tissues so that they can support the formation of new tissues. On the other side, diclofenac as an anti-inflammatory drug potentiates to inhibit the inflammatory excess regarding the damage. This study aims to study the effectiveness of diclofenac scaffold to rabbit joint defect model. The scaffold was implanted in the rabbit femoral trochlear bone hole, which had a diameter of 5 mm and a depth of 4 mm. After 28 days of intervention, the animals were examined using macroscopic evaluation, hematoxylin-eosin (HE) staining, and immunohistochemistry (IHC) for type I collagen and type II collagen. Subsequently, the cartilage was evaluated using the International Cartilage Repair Society (ICRS) scoring system. The macroscopic ICRS scores were significantly higher (p < 0.05) in the bilayer scaffold implantation group compared to the monolayer scaffold and control groups. Histological ICRS scores were also significantly higher (p < 0.05) in the bilayer scaffold group compared to the control group. Type II collagen expression was higher (p < 0.05) in the bilayer scaffold group compared to the monolayer scaffold and control groups, although type I collagen expression was lower in comparison. In conclusion, this research suggests that the diclofenac-loaded bilayer scaffold effectively enhances cartilage and subchondral bone regeneration.
Collapse
Affiliation(s)
- Andhi Suyatno
- Faculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | - Wa O. Nurfinti
- Faculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | | | - Yusuf A. Pratama
- Department of Pharmacy PracticeFaculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy PracticeFaculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | - Samirah Samirah
- Department of Pharmacy PracticeFaculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | - Erreza Rahadiansyah
- Department of Orthopaedics and TraumatologyFaculty of MedicineUniversitas Airlangga, Surabaya 60131, Indonesia
| | - Junaidi Khotib
- Department of Pharmacy PracticeFaculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| | - Aniek S. Budiatin
- Department of Pharmacy PracticeFaculty of PharmacyUniversitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
2
|
Liu C, Yue L, Fu Y, Wan Z, Wang L, Wei Y, Li S. High-Performance Flexible Sensor with Sensitive Strain/Magnetic Dual-Mode Sensing Characteristics Based on Sodium Alginate and Carboxymethyl Cellulose. Gels 2024; 10:555. [PMID: 39330157 PMCID: PMC11431694 DOI: 10.3390/gels10090555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Flexible sensors can measure various stimuli owing to their exceptional flexibility, stretchability, and electrical properties. However, the integration of multiple stimuli into a single sensor for measurement is challenging. To address this issue, the sensor developed in this study utilizes the natural biopolymers sodium alginate and carboxymethyl cellulose to construct a dual interpenetrating network, This results in a flexible porous sponge that exhibits a dual-modal response to strain and magnetic stimulation. The dual-mode flexible sensor achieved a maximum tensile strength of 429 kPa and elongation at break of 24.7%. It also exhibited rapid response times and reliable stability under both strain and magnetic stimuli. The porous foam sensor is intended for use as a wearable electronic device for monitoring joint movements of the body. It provides a swift and stable sensing response to mechanical stimuli arising from joint activities, such as stretching, compression, and bending. Furthermore, the sensor generates opposing response signals to strain and magnetic stimulation, enabling real-time decoupling of different stimuli. This study employed a simple and environmentally friendly manufacturing method for the dual-modal flexible sensor. Because of its remarkable performance, it has significant potential for application in smart wearable electronics and artificial electroskins.
Collapse
Affiliation(s)
- Chong Liu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Longwang Yue
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yu Fu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenshuai Wan
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Li Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yangke Wei
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Sha Li
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Satchanska G, Davidova S, Petrov PD. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers (Basel) 2024; 16:1159. [PMID: 38675078 PMCID: PMC11055061 DOI: 10.3390/polym16081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Natural and synthetic polymers are a versatile platform for developing biomaterials in the biomedical and environmental fields. Natural polymers are organic compounds that are found in nature. The most common natural polymers include polysaccharides, such as alginate, hyaluronic acid, and starch, proteins, e.g., collagen, silk, and fibrin, and bacterial polyesters. Natural polymers have already been applied in numerous sectors, such as carriers for drug delivery, tissue engineering, stem cell morphogenesis, wound healing, regenerative medicine, food packaging, etc. Various synthetic polymers, including poly(lactic acid), poly(acrylic acid), poly(vinyl alcohol), polyethylene glycol, etc., are biocompatible and biodegradable; therefore, they are studied and applied in controlled drug release systems, nano-carriers, tissue engineering, dispersion of bacterial biofilms, gene delivery systems, bio-ink in 3D-printing, textiles in medicine, agriculture, heavy metals removal, and food packaging. In the following review, recent advancements in polymer chemistry, which enable the imparting of specific biomedical functions of polymers, will be discussed in detail, including antiviral, anticancer, and antimicrobial activities. This work contains the authors' experimental contributions to biomedical and environmental polymer applications. This review is a vast overview of natural and synthetic polymers used in biomedical and environmental fields, polymer synthesis, and isolation methods, critically assessessing their advantages, limitations, and prospects.
Collapse
Affiliation(s)
- Galina Satchanska
- BioLaboratory, Department of Natural Sciences, New Bulgarian University, Montevideo Str. 21, 1618 Sofia, Bulgaria;
| | - Slavena Davidova
- BioLaboratory, Department of Natural Sciences, New Bulgarian University, Montevideo Str. 21, 1618 Sofia, Bulgaria;
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl.103A, 1113 Sofia, Bulgaria;
| |
Collapse
|
4
|
Cappai M, Shoukat R, Pilia L, Ricciu R, Lai D, Marongiu G, Pia G. Thermal Properties of Eco-Friendly Earthen Materials Stabilized with Bio-Based Polymers: Experimental Data and Modeling Procedure for Improving Mix-Design. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1035. [PMID: 38473506 DOI: 10.3390/ma17051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
The fight against climate change has delineated new objectives, among which one of the most crucial is the replacement of high-energy-intensity materials in the construction sector with more sustainable and thermally efficient alternatives to reduce indirect emissions. Consequently, the thermal properties of materials assume fundamental importance. In this regard, the large-scale use of earth represents a promising option, not only due to its widespread availability but especially for its minimal embodied energy. However, to enhance its durability, it is necessary to stabilize the mixtures of raw materials. This study analyzes experimental systems based on earth stabilized with bio-based polymers to evaluate their thermal properties and how these vary depending on the selected mix-design. The experimental measurements showed thermal properties comparable to conventional materials. As expected, thermal conductivity increases when porosity decreases. The minimum value is equal to 0.216 W/m·K vs. a porosity of 43.5%, while the maximum is 0.507 W/m·K vs. a porosity of 33.2%. However, the data obtained for individual systems may vary depending on the topological characteristics, which were analyzed through a model for granular materials. The modeling suggests correlations between microstructures and thermal behaviour, which can be useful to develop tools for the mix-design procedure.
Collapse
Affiliation(s)
- Marta Cappai
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Materialia Association, 09037 San Gavino Monreale, Italy
| | - Rizwan Shoukat
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Luca Pilia
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Roberto Ricciu
- Dipartimento di Ingegneria Civile, Ambientale e Architettura, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Daniele Lai
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Gianluca Marongiu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giorgio Pia
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Materialia Association, 09037 San Gavino Monreale, Italy
| |
Collapse
|
5
|
Bukhari NTM, Rawi NFM, Hassan NAA, Saharudin NI, Kassim MHM. Seaweed polysaccharide nanocomposite films: A review. Int J Biol Macromol 2023; 245:125486. [PMID: 37355060 DOI: 10.1016/j.ijbiomac.2023.125486] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
A million tonnes of plastic produced each year are disposed of after single use. Biodegradable polymers have become a promising material as an alternative to petroleum-based polymers. Utilising biodegradable polymers will promote environmental sustainability which has emerged with potential features and performances for various applications in different sectors. Seaweed-derived polysaccharides-based composites have been the focus of numerous studies due to the composites' renewability and sustainability for industries (food packaging and medical fields like tissue engineering and drug delivery). Due to their biocompatibility, abundance, and gelling ability, seaweed derivatives such as alginate, carrageenan, and agar are commonly used for this purpose. Seaweed has distinct film-forming characteristics, but its mechanical and water vapour barrier qualities are weak. Thus, modifications are necessary to enhance the seaweed properties. This review article summarises and discusses the effect of incorporating seaweed films with different types of nanoparticles on their mechanical, thermal, and water barrier properties.
Collapse
Affiliation(s)
- Nur Thohiroh Md Bukhari
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nur Adilah Abu Hassan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nur Izzaati Saharudin
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Haafiz Mohamad Kassim
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
6
|
Serri C, Cruz-Maya I, Bonadies I, Rassu G, Giunchedi P, Gavini E, Guarino V. Green Routes for Bio-Fabrication in Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:1744. [PMID: 37376192 PMCID: PMC10300741 DOI: 10.3390/pharmaceutics15061744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In the last decade, significant advances in nanotechnologies, rising from increasing knowledge and refining of technical practices in green chemistry and bioengineering, enabled the design of innovative devices suitable for different biomedical applications. In particular, novel bio-sustainable methodologies are developing to fabricate drug delivery systems able to sagely mix properties of materials (i.e., biocompatibility, biodegradability) and bioactive molecules (i.e., bioavailability, selectivity, chemical stability), as a function of the current demands for the health market. The present work aims to provide an overview of recent developments in the bio-fabrication methods for designing innovative green platforms, emphasizing the relevant impact on current and future biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
7
|
Polunin Y, Kirianchuk V, Mhesn N, Wei L, Minko S, Luzinov I, Voronov A. Tough Bioplastics from Babassu Oil-Based Acrylic Monomer, Hemicellulose Xylan, and Carnauba Wax. Int J Mol Sci 2023; 24:ijms24076103. [PMID: 37047076 PMCID: PMC10094404 DOI: 10.3390/ijms24076103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
We describe here the fabrication, characterization, and properties of tough bioplastics made of a babassu oil-based acrylic polymer (PBBM), hemicellulose xylan grafted with PBBM chains, and carnauba wax (CW). The plastic was primarily designed to obtain bioderived materials that can replace low-density polyethylene (LDPE) in certain food packaging applications. To obtain plastic, the radical polymerization of an original babassu oil-based acrylic monomer (BBM) in the presence of xylan macromolecules modified with maleic anhydride (X-MA) was conducted. The polymerization resulted in a material (PBBM-X) mostly consisting of highly branched PBBM/X-MA macromolecules. PBBM-X has a glass transition of 42 °C, a storage modulus of 130 MPa (at 25 °C, RT), and a Young's modulus of 30 MPa at RT. To increase the moduli, we blended PBBM-X with carnauba wax, a natural material with a high modulus and a melting temperature of ~80 °C. It was found that PBBM-X is compatible with the wax, as evidenced by the alternation of the material's thermal transitions and the co-crystallization of BBM side alkyl fragments with CW. As a result, the PBBM-X/CW blend containing 40% of the wax had a storage modulus of 475 MPa (RT) and a Young's modulus of 248 MPa (RT), which is close to that of LDPE. As polyethylene, the PBBM-X and PBBM-X/CW bioplastics have the typical stress-strain behavior demonstrated by ductile (tough) plastics. However, the bioplastic's yield strength and elongation-at-yield are considerably lower than those of LDPE. We evaluated the moisture barrier properties of the PBBM-X/(40%)CW material and found that the bioplastic's water vapor permeability (WVP) is quite close to that of LDPE. Our bioderived material demonstrates a WVP that is comparable to polyethylene terephthalate and lower than the WVP of nylon and polystyrene. Taking into account the obtained results, the fabricated materials can be considered as polyethylene alternatives to provide sustainability in plastics production in the packaging areas where LDPE currently dominates.
Collapse
Affiliation(s)
- Yehor Polunin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58105, USA
| | - Vasylyna Kirianchuk
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58105, USA
| | - Najah Mhesn
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Liying Wei
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Sergiy Minko
- Nanostructured Materials Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Igor Luzinov
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Andriy Voronov
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
8
|
Cao W, Jin J, Wu G, Bravenboer N, Helder MN, Schulten EAJM, Bacabac RG, Pathak JL, Klein-Nulend J. Kappa-carrageenan-Functionalization of octacalcium phosphate-coated titanium Discs enhances pre-osteoblast behavior and osteogenic differentiation. Front Bioeng Biotechnol 2022; 10:1011853. [PMID: 36338134 PMCID: PMC9632979 DOI: 10.3389/fbioe.2022.1011853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 08/29/2023] Open
Abstract
Bioactive coatings are promising for improving osseointegration and the long-term success of titanium dental or orthopaedic implants. Biomimetic octacalcium phosphate (OCP) coating can be used as a carrier for osteoinductive agents. κ-Carrageenan, a highly hydrophilic and biocompatible seaweed-derived sulfated-polysaccharide, promotes pre-osteoblast activity required for bone regeneration. Whether κ-carrageenan can functionalize OCP-coating to enhance osseointegration of titanium implants is unclear. This study aimed to analyze carrageenan-functionalized biomimetic OCP-coated titanium structure, and effects of carrageenan functionalization on pre-osteoblast behavior and osteogenic differentiation. Titanium discs were coated with OCP/κ-carrageenan at 0.125-2 mg/ml OCP solution, and physicochemical and biological properties were investigated. κ-Carrageenan (2 mg/ml) in the OCP coating of titanium discs decreased the pore size in the sheet-like OCP crystal by 41.32%. None of the κ-carrageenan concentrations tested in the OCP-coating did affect hydrophilicity. However, κ-carrageenan (2 mg/ml) increased (1.26-fold) MC3T3-E1 pre-osteoblast spreading at 1 h i.e., κ-Carrageenan in the OCP-coating increased pre-osteoblast proliferation (max. 1.92-fold at 2 mg/ml, day 1), metabolic activity (max. 1.50-fold at 2 mg/ml, day 3), and alkaline phosphatase protein (max. 4.21-fold at 2 mg/ml, day 3), as well as matrix mineralization (max. 5.45-fold at 2 mg/ml, day 21). κ-Carrageenan (2 mg/ml) in the OCP-coating increased gene expression of Mepe (4.93-fold) at day 14, and Runx2 (2.94-fold), Opn (3.59-fold), Fgf2 (3.47-fold), Ocn (3.88-fold), and Dmp1 (4.59-fold) at day 21 in pre-osteoblasts. In conclusion, κ-carrageenan modified the morphology and microstructure of OCP-coating on titanium discs, and enhanced pre-osteoblast metabolic activity, proliferation, and osteogenic differentiation. This suggests that κ-carrageenan-functionalized OCP coating may be promising for in vivo improvement of titanium implant osseointegration.
Collapse
Affiliation(s)
- Wei Cao
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Gang Wu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Marco N. Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Engelbert A. J. M. Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Rommel G. Bacabac
- Department of Physics, Medical Biophysics Group, University of San Carlos, Cebu City, Phlilippines
| | - Janak L. Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
9
|
Mashabela LT, Maboa MM, Miya NF, Ajayi TO, Chasara RS, Milne M, Mokhele S, Demana PH, Witika BA, Siwe-Noundou X, Poka MS. A Comprehensive Review of Cross-Linked Gels as Vehicles for Drug Delivery to Treat Central Nervous System Disorders. Gels 2022; 8:563. [PMID: 36135275 PMCID: PMC9498590 DOI: 10.3390/gels8090563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gels are attractive candidates for drug delivery because they are easily producible while offering sustained and/or controlled drug release through various mechanisms by releasing the therapeutic agent at the site of action or absorption. Gels can be classified based on various characteristics including the nature of solvents used during preparation and the method of cross-linking. The development of novel gel systems for local or systemic drug delivery in a sustained, controlled, and targetable manner has been at the epitome of recent advances in drug delivery systems. Cross-linked gels can be modified by altering their polymer composition and content for pharmaceutical and biomedical applications. These modifications have resulted in the development of stimuli-responsive and functionalized dosage forms that offer many advantages for effective dosing of drugs for Central Nervous System (CNS) conditions. In this review, the literature concerning recent advances in cross-linked gels for drug delivery to the CNS are explored. Injectable and non-injectable formulations intended for the treatment of diseases of the CNS together with the impact of recent advances in cross-linked gels on studies involving CNS drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Madan S. Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| |
Collapse
|
10
|
Kirianchuk V, Domnich B, Demchuk Z, Bon I, Trotsenko S, Shevchuk O, Pourhashem G, Voronov A. Plant Oil-Based Acrylic Latexes towards Multisubstrate Bonding Adhesives Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165170. [PMID: 36014411 PMCID: PMC9416654 DOI: 10.3390/molecules27165170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022]
Abstract
To investigate the utility of acrylic monomers from various plant oils in adhesives manufacturing, 25–45 wt. % of high oleic soybean oil-based monomer (HOSBM) was copolymerized in a miniemulsion with commercially applied butyl acrylate (BA), methyl methacrylate (MMA), or styrene (St). The compositions of the resulting ternary latex copolymers were varied in terms of both “soft” (HOSBM, BA) and “rigid” (MMA or St) macromolecular fragments, while total monomer conversion and molecular weight of copolymers were determined after synthesis. For most latexes, results indicated the presence of lower and higher molecular weight fractions, which is beneficial for the material adhesive performance. To correlate surface properties and adhesive performance of HOSBM-based copolymer latexes, contact angle hysteresis (using water as a contact liquid) for each latex-substrate pair was first determined. The data showed that plant oil-based latexes exhibit a clear ability to spread and adhere once applied on the surface of materials differing by polarities, such as semicrystalline polyethylene terephthalate (PET), polypropylene (PP), bleached paperboard (uncoated), and tops coated with a clay mineral paperboard. The effectiveness of plant oil-based ternary latexes as adhesives was demonstrated on PET to PP and coated to uncoated paperboard substrates. As a result, the latexes with high biobased content developed in this study provide promising adhesive performance, causing substrate failure instead of cohesive/adhesive break in many experiments.
Collapse
Affiliation(s)
- Vasylyna Kirianchuk
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Bohdan Domnich
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | - Zoriana Demchuk
- Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, TN 37830, USA
| | - Iryna Bon
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | - Svitlana Trotsenko
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | - Oleh Shevchuk
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Ghasideh Pourhashem
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | - Andriy Voronov
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
- Correspondence:
| |
Collapse
|
11
|
Chen M, Jiang R, Deng N, Zhao X, Li X, Guo C. Natural polymer-based scaffolds for soft tissue repair. Front Bioeng Biotechnol 2022; 10:954699. [PMID: 35928962 PMCID: PMC9343850 DOI: 10.3389/fbioe.2022.954699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Soft tissues such as skin, muscle, and tendon are easily damaged due to injury from physical activity and pathological lesions. For soft tissue repair and regeneration, biomaterials are often used to build scaffolds with appropriate structures and tailored functionalities that can support cell growth and new tissue formation. Among all types of scaffolds, natural polymer-based scaffolds attract much attention due to their excellent biocompatibility and tunable mechanical properties. In this comprehensive mini-review, we summarize recent progress on natural polymer-based scaffolds for soft tissue repair, focusing on clinical translations and materials design. Furthermore, the limitations and challenges, such as unsatisfied mechanical properties and unfavorable biological responses, are discussed to advance the development of novel scaffolds for soft tissue repair and regeneration toward clinical translation.
Collapse
Affiliation(s)
- Meiwen Chen
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Rui Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Xiumin Zhao
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Xiangjuan Li
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| |
Collapse
|
12
|
Effect of Fatty Acid Polyunsaturation on Synthesis and Properties of Emulsion Polymers Based on Plant Oil-Based Acrylic Monomers. Molecules 2022; 27:molecules27030932. [PMID: 35164194 PMCID: PMC8839316 DOI: 10.3390/molecules27030932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study demonstrated that polymerization behavior of plant oil-based acrylic monomers (POBMs) synthesized in one-step transesterification reaction from naturally rich in oleic acid olive, canola, and high-oleic soybean oils is associated with a varying mass fraction of polyunsaturated fatty acid fragments (linoleic (C18:2) and linolenic (C18:3) acid esters) in plant oil. Using miniemulsion polymerization, a range of stable copolymer latexes was synthesized from 60 wt.% of each POBM and styrene to determine the impact of POBM chemical composition (polyunsaturation) on thermal and mechanical properties of the resulted polymeric materials. The unique composition of each plant oil serves as an experimental tool to determine the effect of polyunsaturated fatty acid fragments on POBM polymerization behavior and thermomechanical properties of crosslinked films made from POBM-based latexes. The obtained results show that increasing polyunsaturation in the copolymers results in an enhanced crosslink density of the latex polymer network which essentially impacts the mechanical properties of the films (both Young’s modulus and toughness). Maximum toughness was observed for crosslinked latex films made from 50 wt.% of each POBM in the monomer feed.
Collapse
|
13
|
Trombino S, Curcio F, Poerio T, Pellegrino M, Russo R, Cassano R. Chitosan Membranes Filled with Cyclosporine A as Possible Devices for Local Administration of Drugs in the Treatment of Breast Cancer. Molecules 2021; 26:molecules26071889. [PMID: 33810514 PMCID: PMC8036521 DOI: 10.3390/molecules26071889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/12/2023] Open
Abstract
The aim of this work is the design, preparation and characterization of membranes based on cyclosporine A (CsA) and chitosan carboxylate (CC) to be used as an implantable subcutaneous medical device for a prolonged therapeutic effect in the treatment of breast cancer. The choice to use CsA is due to literature data that have demonstrated its possible antitumor activity on different types of neoplastic cells. To this end, CsA was bound to CC through an amidation reaction to obtain a prodrug to be dispersed in a chitosan-based polymeric membrane. The reaction intermediates and the final product were characterized by Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H-NMR). Membranes were analyzed by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The data obtained showed the effective formation of the amide bond between CsA and CC and the complete dispersion of CsA inside the polymeric membrane. Furthermore, preliminary tests, conducted on MDA-MB-231, a type of breast cancer cell line, have shown a high reduction in the proliferation of cancer cells. These results indicate the possibility of using the obtained membranes as an interesting strategy for the release of cyclosporin-A in breast cancer patients.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (S.T.); (F.C.); (M.P.); (R.R.)
| | - Federica Curcio
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (S.T.); (F.C.); (M.P.); (R.R.)
| | - Teresa Poerio
- Institute on Membrane Technology (CNR-ITM), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy;
| | - Michele Pellegrino
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (S.T.); (F.C.); (M.P.); (R.R.)
| | - Rossella Russo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (S.T.); (F.C.); (M.P.); (R.R.)
| | - Roberta Cassano
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (S.T.); (F.C.); (M.P.); (R.R.)
- Correspondence: ; Tel.: +39-984-493227
| |
Collapse
|