1
|
Lu JX, Lan HR, Zeng D, Song JY, Hao YT, Xing AP, Shen A, Yuan J. Design, synthesis, anticancer activity and molecular docking of quinoline-based dihydrazone derivatives. RSC Adv 2025; 15:231-243. [PMID: 39758910 PMCID: PMC11694625 DOI: 10.1039/d4ra06954d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
Based on the biologically active heterocycle quinoline, we successfully synthesized a series of quinoline-based dihydrazone derivatives (3a-3d). 1H NMR, 13C NMR, ESI-HRMS, IR, element analysis, UV/Vis spectroscopy and fluorescence spectroscopy were performed to comprehensively characterize their chemical structures, spectral properties and stability. Nitrosamine impurities were not detected in 3a-3d, and the systemic toxicological assessment indicated that the toxicity of 3a-3d was lower. Furthermore, their anticancer activity was evaluated by MTT, AO/EB double staining, apoptosis detection and ROS detection. The time-dependent UV/Vis spectra revealed that 3a-3d had good stability in solution. For all the newly synthesized compounds, cytotoxic activities were carried out against human gastric cancer cell line BGC-823, human hepatoma cell line BEL-7402, human breast cancer cell line MCF-7 and human lung adenocarcinoma cell line A549 as well as human normal liver cell line HL-7702. MTT assay indicated that all the tested compounds exhibited important antiproliferative activity against selected cancer cell lines with IC50 values ranging from 7.01 to 34.32 μM, while none of them had obvious cytotoxic activity to human normal liver cell line HL-7702. Further, the most potent compound 3c displayed stronger antiproliferative activity against all the selected cancer cell lines than the clinically used anticancer agent 5-FU. Especially, 3b and 3c displayed cytotoxic activity against MCF-7 cells with IC50 values of 7.016 μM and 7.05 μM, respectively. AO/EB double staining, flow cytometry and ROS detection suggested that 3b and 3c could induce MCF-7 cell apoptosis in a dose-dependent manner. Molecular docking suggests that 3b and 3c could bind with DNA via partial insertion. Additionally, molecular docking also suggests that CDK2 may be one of the targets for 3b and 3c. In a word, 3b and 3c could be suitable candidates for further investigation as chemotherapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Jia-Xing Lu
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Hai-Rong Lan
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Dai Zeng
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Jun-Ying Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Ya-Ting Hao
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Ai-Ping Xing
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Ao Shen
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Juan Yuan
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| |
Collapse
|
2
|
Turhal G, Demirkan B, Baslilar IN, Yuncu NS, Baytas SN, Demiroglu-Zergeroglu A. Preliminary evaluation of antiproliferative and apoptotic activities of novel indolin-2-one derivatives. Drug Dev Res 2024; 85:e22229. [PMID: 38958104 DOI: 10.1002/ddr.22229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Indole-based agents are frequently used in targeted or supportive therapy of several cancers. In this study, we investigated the anticancer properties of originally synthesized novel indolin-2-one derivatives (6a-d) against Malignant Mesothelioma, Breast cancer, and Colon Cancer cells. Our results revealed that all derivatives were effectively delayed cell proliferation by inhibiting the ERK1/2, AKT, and STAT3 signaling pathways in a concentration-dependent manner. Additionally, these variants induced cell cycle arrest in the S phase, accompanied by elevated levels of p21 and p27 expressions. Derivatives also initiated mitochondrial apoptosis through the upregulation of Bax and downregulation of Bcl-2 proteins, leading to the activation of caspase 3 and PARP cleavage in exposed cells. Remarkably, three of the indolin-2-one derivatives displayed significant selectivity towards Breast and Colon Cancer cells, with compound 6d promising as the most potent and wide spectral one for all cancer cell lines.
Collapse
Affiliation(s)
- Gulseren Turhal
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Busra Demirkan
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Izel Nermin Baslilar
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Nimet Sule Yuncu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | |
Collapse
|
3
|
Soudi A, Bender O, Celik I, El-Hafeez AAA, Dogan R, Atalay A, Elkaeed EB, Alsfouk AA, Abdelhafez EMN, Aly OM, Sippl W, Ali TFS. Discovery and Anticancer Screening of Novel Oxindole-Based Derivative Bearing Pyridyl Group as Potent and Selective Dual FLT3/CDK2 Kinase Inhibitor. Pharmaceuticals (Basel) 2024; 17:659. [PMID: 38794229 PMCID: PMC11124822 DOI: 10.3390/ph17050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Protein kinases regulate cellular activities and make up over 60% of oncoproteins and proto-oncoproteins. Among these kinases, FLT3 is a member of class III receptor tyrosine kinase family which is abundantly expressed in individuals with acute leukemia. Our previous oxindole-based hit has a particular affinity toward FLT3 (IC50 = 2.49 μM) and has demonstrated selectivity towards FLT3 ITD-mutated MV4-11 AML cells, with an IC50 of 4.3 μM. By utilizing the scaffold of the previous hit, sixteen new compounds were synthesized and screened against NCI-60 human cancer cell lines. This leads to the discovery of a potent antiproliferative compound, namely 5l, with an average GI50 value against leukemia and colon cancer subpanels equalling 3.39 and 5.97 µM, respectively. Screening against a specific set of 10 kinases that are associated with carcinogenesis indicates that compound 5l has a potent FLT3 inhibition (IC50 = 36.21 ± 1.07 nM). Remarkably, compound 5l was three times more effective as a CDK2 inhibitor (IC50 = 8.17 ± 0.32 nM) compared to sunitinib (IC50 = 27.90 ± 1.80 nM). Compound 5l was further analyzed by means of docking and molecular dynamics simulation for CDK2 and FLT3 active sites which provided a rational for the observed strong inhibition of kinases. These results suggest a novel structural scaffold candidate that simultaneously inhibits CDK2 and FLT3 and gives encouragement for further development as a potential therapeutic for leukemia and colon cancer.
Collapse
Affiliation(s)
- Aya Soudi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rumeysa Dogan
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | | | - Omar M. Aly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany
| | - Taha F. S. Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
4
|
Athwal H, Kochiyanil A, Bhat V, Allan AL, Parsyan A. Centrosomes and associated proteins in pathogenesis and treatment of breast cancer. Front Oncol 2024; 14:1370565. [PMID: 38606093 PMCID: PMC11007099 DOI: 10.3389/fonc.2024.1370565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide. Despite significant advances in treatment, it remains one of the leading causes of female mortality. The inability to effectively treat advanced and/or treatment-resistant breast cancer demonstrates the need to develop novel treatment strategies and targeted therapies. Centrosomes and their associated proteins have been shown to play key roles in the pathogenesis of breast cancer and thus represent promising targets for drug and biomarker development. Centrosomes are fundamental cellular structures in the mammalian cell that are responsible for error-free execution of cell division. Centrosome amplification and aberrant expression of its associated proteins such as Polo-like kinases (PLKs), Aurora kinases (AURKs) and Cyclin-dependent kinases (CDKs) have been observed in various cancers, including breast cancer. These aberrations in breast cancer are thought to cause improper chromosomal segregation during mitosis, leading to chromosomal instability and uncontrolled cell division, allowing cancer cells to acquire new genetic changes that result in evasion of cell death and the promotion of tumor formation. Various chemical compounds developed against PLKs and AURKs have shown meaningful antitumorigenic effects in breast cancer cells in vitro and in vivo. The mechanism of action of these inhibitors is likely related to exacerbation of numerical genomic instability, such as aneuploidy or polyploidy. Furthermore, growing evidence demonstrates enhanced antitumorigenic effects when inhibitors specific to centrosome-associated proteins are used in combination with either radiation or chemotherapy drugs in breast cancer. This review focuses on the current knowledge regarding the roles of centrosome and centrosome-associated proteins in breast cancer pathogenesis and their utility as novel targets for breast cancer treatment.
Collapse
Affiliation(s)
- Harjot Athwal
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arpitha Kochiyanil
- Faculty of Science, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
| | - Alison L. Allan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of General Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Surgery, St. Joseph’s Health Care London and London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
5
|
Patel DA, Patel SS, Patel HD. Advances in synthesis and biological evaluation of CDK2 inhibitors for cancer therapy. Bioorg Chem 2024; 143:107045. [PMID: 38147786 DOI: 10.1016/j.bioorg.2023.107045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
One of the leading causes of mortality in the world is cancer. This disease occurs when responsible genes that regulate the cell cycle become inactive due to internal or external factors. Specifically, the G1/S and S/G2 transitions in the cell cycle are controlled by a protein called cyclin-dependent kinase 2 (CDK2). CDKs, which play a crucial role in managing the cell cycle, have been a wide area of research in cancer treatment. Over the past 11 years, significant research has been made in identifying potent, targeted, and efficient inhibitors of CDK2. In this summary, we have summarized recent developments in the synthesis and biological evaluation of CDK2 inhibitors.
Collapse
Affiliation(s)
- Dharmesh A Patel
- Department of Chemistry, School of Sciences, Gujarat University, Navarangpura, Ahmedabad, Gujarat, India
| | - Siddharth S Patel
- Department of Chemistry, School of Sciences, Gujarat University, Navarangpura, Ahmedabad, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Navarangpura, Ahmedabad, Gujarat, India.
| |
Collapse
|
6
|
Farghaly TA, Abbas EMH, Al-Sheikh MA, Medrasi HY, Masaret GS, Pashameah RA, Qurban J, Harras MF. Synthesis of tricyclic and tetracyclic benzo[6,7]cycloheptane derivatives linked morpholine moiety as CDK2 inhibitors. Drug Dev Res 2023; 84:1127-1141. [PMID: 37170788 DOI: 10.1002/ddr.22074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
With the aim of developing cyclin-dependent kinase 2 (CDK2) inhibitors with strong antibreast cancer efficacy, new tricyclic and tetracyclic benzo[6,7]cycloheptane derivatives were synthesized. The newly synthesized tri- and tetracyclic derivatives were achieved from the reaction of 4-(4-morpholin-4-yl-phenyl)-1,3,4,5,6,7-hexahydro-benzo[6,7]cyclohepta[1,2-d]pyrimidine-2-thione (5) with α-haloketone derivatives as hydrazonyl chlorides, phenacyl bromide derivatives, chloroacetone, and ethyl substituted acetate derivatives. The MCF-7 and MDA-MB-231 breast cancer cell lines were utilized to examine the anticancer properties. Compounds 5 and 8 were shown to be the most effective, with half-maximal inhibitory concentration (IC50 ) values between 5.73 and 9.11 µM, which are on the level with doxorubicin. Mechanistic studies showed that 5 and 8 caused tumor cell death by inducing apoptosis and they also produced cancer arrest in the S phase of the cell cycle. In addition, compounds 5 and 8 showed strong anti-CDK2 action (IC50 = 0.112 and 0.18 µM, respectively) comparable to roscovitine (IC50 = 0.127 µM). Moreover, the docking result demonstrated that derivatives 5 and 8 fit into the CDK2 active site in the proper orientation.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman M H Abbas
- Chemistry of National and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Mariam A Al-Sheikh
- Department of Chemistry, Faculty of Science, University of Jeddah, AlFaisaliah, Jeddah, Saudi Arabia
| | - Hanadi Y Medrasi
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jihan Qurban
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Alanazi MM, Alanazi AS. Novel 7-Deazapurine Incorporating Isatin Hybrid Compounds as Protein Kinase Inhibitors: Design, Synthesis, In Silico Studies, and Antiproliferative Evaluation. Molecules 2023; 28:5869. [PMID: 37570839 PMCID: PMC10420662 DOI: 10.3390/molecules28155869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is a multifactorial disorder with extremely complex genetics and progression. The major challenge in cancer therapy is the development of cancer resistance and relapse. Conventional anticancer drugs directly target the DNA of the cell, while modern chemotherapeutic drugs include molecular-targeted therapy, such as targeting the abnormal cell signaling inside the cancer cells. Targeted chemotherapy is effective in several malignancies; however, the success has always been limited by drug resistance and/or side effects. Anticancer with multi-targeted actions simultaneously modulates multiple cancer cell signaling pathways and, therefore, may ease the chance of effective anticancer drug development. In this research, a series of 7-deazapurine incorporating isatin hybrid compounds was designed and successfully synthesized. Among those hybrids, compound 5 demonstrated a very potent cytotoxic effect compared to the reference anticancer drug against four cancer cell lines. Likewise, compound 5 inhibited the activity of four protein kinase enzymes in nanomolar ranges. Further analysis of the biological evaluation of compound 5 revealed the capability of compound 5 to arrest cell cycle progression and induce programmed cell death. Moreover, molecular simulation studies were performed to investigate the possible types of interactions between compound 5 and the investigated protein kinases. Finally, taking into consideration all the abovementioned findings, compound 5 could be a good candidate for further investigations.
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
8
|
Alanazi AS, Mirgany TO, Alsaif NA, Alsfouk AA, Alanazi MM. Design, synthesis, antitumor evaluation, and molecular docking of novel pyrrolo[2,3-d]pyrimidine as multi-kinase inhibitors. Saudi Pharm J 2023; 31:989-997. [PMID: 37234342 PMCID: PMC10205775 DOI: 10.1016/j.jsps.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
In the last twenty years, protein kinases have been identified as important targets for cancer therapy. In order to prevent unexpected toxicity, medicinal chemists have always focused on discovering selective protein kinase inhibitors. However, cancer is a multifactorial process and its formation and progression depend on different stimuli. Therefore, it is imperative to develop anticancer therapy that targets multiple kinases associated cancer progression. In this research a series of hybrid compounds was designed and synthesized successfully with the aim of producing anticancer activity through the induction of multiple protein kinase inhibition. The designed derivatives comprise isatin and pyrrolo[2,3-d]pyrimidine scaffolds in their structures with a hydrazine linking the two pharmacophores. Antiproliferative and kinase inhibition assays revealed promising anticancer and multi-kinase inhibitory effects of compound 7 with comparable results with the reference standards. Moreover, compound 7 suppressed cell cycle progression and induced apoptosis in HepG2 cells. Finally, molecular docking simulation was performed to investigate the potential types of interactions between the protein kinase enzymes and the designed hybrid compounds. The results of this research indicated the promising anticancer effect of compound 7 through the inhibition of a number of protein kinase receptors and the suppression of cell cycle and the induction of apoptosis.
Collapse
Affiliation(s)
- Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Tebyan O. Mirgany
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Abdelgawad MA, Bukhari SNA, Musa A, Elmowafy M, Nayl AA, El-Ghorab AH, Sadek Abdel-Bakky M, Omar HA, Hadal Alotaibi N, Hassan HM, Ghoneim MM, Bakr RB. Phthalazone tethered 1,2,3-triazole conjugates: In silico molecular docking studies, synthesis, in vitro antiproliferative, and kinase inhibitory activities. Bioorg Chem 2023; 133:106404. [PMID: 36812829 DOI: 10.1016/j.bioorg.2023.106404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023]
Abstract
New phthalazone tethered 1,2,3-triazole derivatives 12-21 were synthesized utilizing the Cu(I)-catalyzed click reactions of alkyne-functionalized phthalazone 1 with functionalized azides 2-11. The new phthalazone-1,2,3-triazoles structures 12-21 were confirmed by different spectroscopic tools, like IR; 1H, 13C, 2D HMBC and 2D ROESY NMR; EI MS, and elemental analysis. The antiproliferative efficacy of the molecular hybrids 12-21 against four cancer cell lines was evaluated, including colorectal cancer, hepatoblastoma, prostate cancer, breast adenocarcinoma, and the normal cell line WI38. The antiproliferative assessment of derivatives 12-21 showed potent activity of compounds 16, 18, and 21 compared to the anticancer drug doxorubicin. Compound 16 showed selectivity (SI) towardthe tested cell lines ranging from 3.35 to 8.84 when compared to Dox., that showed SI ranged from 0.75 to 1.61. Derivatives 16, 18 and 21 were assessed towards VEGFR-2 inhibitory activity and result in that derivative 16 showed the potent activity (IC50 = 0.123 µM) in comparison with sorafenib (IC50 = 0.116 µM). Compound 16 caused an interference with the cell cycle distribution of MCF7 and increased the percentage of cells in S phase by 1.37-fold. In silico molecular docking of the effective derivatives 16, 18, and 21 against vascular endothelial growth factor receptor-2 (VEGFR-2) confirmed the formation of stable protein-ligand interactions within the pocket.
Collapse
Affiliation(s)
- Mohamed A Abdelgawad
- Department of pharmaceutical chemistry, college of pharmacy, Jouf university, sakaka 72431, Saudi Arabia.
| | - Syed Nasir Abbas Bukhari
- Department of pharmaceutical chemistry, college of pharmacy, Jouf university, sakaka 72431, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - AbdElAziz A Nayl
- Department of chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ahmed H El-Ghorab
- Department of chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
10
|
Alanazi AS, Mirgany TO, Alsfouk AA, Alsaif NA, Alanazi MM. Antiproliferative Activity, Multikinase Inhibition, Apoptosis- Inducing Effects and Molecular Docking of Novel Isatin-Purine Hybrids. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59030610. [PMID: 36984611 PMCID: PMC10051310 DOI: 10.3390/medicina59030610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
The traditional single-treatment strategy for cancer is frequently unsuccessful due to the complexity of cellular signaling. However, suppression of multiple targets is vital to defeat tumor cells. In this research, new compounds for the treatment of cancer were developed successfully as novel hybrid anticancer agents. Based on a molecular hybridization strategy, we designed hybrid agents that target multiple protein kinases to fight cancer cells. The proposed hybrid agents combined purine and isatin moieties in their structures with 4-aminobenzohydrazide and hydrazine as different linkers. Having those two moieties in one molecule enabled the capability to inhibit multiple kinases, such as human epidermal receptor (EGFR), human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 2 (CDK2). Anticancer activity was evaluated by performing cytotoxicity assays, kinase inhibition assays, cell cycle analysis, and BAX, Bcl-2, Caspase 3 and Caspase 9 protein level determination assays. The results showed that the designed hybrids tackled the cancer by inhibiting both cell proliferation and metastasis. A molecular docking study was performed to predict possible binding interactions in the active site of the investigated protein kinase enzymes.
Collapse
Affiliation(s)
- Ashwag S Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Tebyan O Mirgany
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Alshaye NA. Synthesis and in vitro anticancer activity of some 2-oxindoline derivatives as potential CDK2 inhibitors. J Biomol Struct Dyn 2023; 41:15009-15022. [PMID: 36927308 DOI: 10.1080/07391102.2023.2187222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Novel series of 2-oxindoline hydrazones 6a-h, 3-hydroxy-2-oxoindolines 9a-d and 2-oxoindolin-3-ylidenes 10a-d were prepared and assessed for their anticancer activity towards breast cancer cell line (MCF7). Compounds 6c, 6d, 6g, 9d, 10a and 10b (IC50 = 14.0 ± 0.7, 15.6 ± 0.7, 13.8 ± 0.7, 4.9 ± 0.2, 6.0 ± 0.3 and 10.8 ± 0.5 µM, respectively) showed the highest growth inhibition activity against MCF7 when compared to staurosporine (IC50 = 14.5 ± 0.7 µM). Cell cycle analysis exposed arrest at G1 phase for compounds 6c, 10 and 10b, at S phase for compounds 6d and 9d, and at G1/S phase for compound 6g. Apoptotic effect of compounds 6c, 6d, 6g, 9d, 10a and 10b was confirmed via their early and late apoptotic effects. A safety profile was revealed for compounds 6c, 6d, 6g, 9d, 10a and 10b on MCF10A treated normal cell. Also, compounds 6c and 10b displayed a promising CDK2 inhibition activity (IC50 = 0.22 ± 0.01, 0.25 ± 0.01 µM, respectively). Also, docking study revealed comparable interactions with the native ligand (5-bromoindirubin). ADMET computational studies forecast the promising pharmacokinetic profile of the targeted compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Amin NH, El-Saadi MT, Abdel-Fattah MM, Mohammed AA, Said EG. Development of certain aminoquinazoline scaffolds as potential multitarget anticancer agents with apoptotic and anti-proliferative effects: Design, synthesis and biological evaluation. Bioorg Chem 2023; 135:106496. [PMID: 36989735 DOI: 10.1016/j.bioorg.2023.106496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Newly designed 4 - aminoquinazoline derivatives (5a-f, 6a, b, 7, 8, 9, 10a-c, 11a, b, 12a, b and 13a, b) have been synthesized and evaluated for their potential multitarget anticancer activities, apoptotic and anti-proliferative effects. Thereupon, in vitro cytotoxic activities of all the synthesized compounds were screened against NCI 60 human cancer cell lines (nine subpanels) at NCI, USA. Successfully, 2-morpholino-N-(quinazolin-4-yl) acetohydrazide 5e was granted an NSC code, owing to its significant potency and broad spectrum of activity against various cancer cell lines; leukemia K-562, non-small cell lung cancer NCI-H522 cells, colon cancer SW-620, melanoma LOX IMVI, MALME-3M, renal cancer RXF 393, ACHN and breast cancer MDA-MB231/ATCC (GI% = 99.6, 161, 126.03, 90.22, 174.47, 139.7, 191 and 97, respectively). Compound 5e showed the best inhibitory activity (GI50 = 1.3 µM) against melanoma LOX IMVI, when tested at five doses against NCI 60 cell lines. Furthermore, compound 5e showed comparable EGFR and CDK2 inhibitory activity results (IC50 = 0.093 ± 0.006 μM and 0.143 ± 0.008 μM, respectively) to those of lapatinib and ribociclib (IC50 = 0.03 ± 0.002 μM and 0.067 ± 0.004 μM, respectively). Western blotting analysis of compound 5e against melanoma LOX IMVI marked out significant reduced EGFR and CDK2 protein expression percentages, up to 32.97% and 34.09%, respectively, if compared to lapatinib (31.18%) and ribociclib (29.66%). Moreover, compound 5e caused clear cell cycle arrests at S phase of renal UO-31 cells and at G1 phase of both breast cancer MCF7 and ovarian cancer IGROV1, associated with remarkable increase of DNA content of the controls. In accordance, it demonstrated promising anti- proliferative and apoptotic activities, showing a significant increase in total apoptotic percentages of renal cancer UO-31, breast cancer MCF7 and ovarian IGROV1 cancer cell lines, if compared to the control untreated cells (from 1.79% to 46.72%, 2.19% to 39.02% and 1.66 to 42.51%, respectively). Molecular modelling and dynamic simulation study results supported the main objectives of the present work.
Collapse
|
13
|
D'costa M, Bothe A, Das S, Udhaya Kumar S, Gnanasambandan R, George Priya Doss C. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:125-177. [PMID: 37061330 DOI: 10.1016/bs.apcsb.2022.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serine/threonine kinases called cyclin-dependent kinases (CDKs) interact with cyclins and CDK inhibitors (CKIs) to control the catalytic activity. CDKs are essential controllers of RNA transcription and cell cycle advancement. The ubiquitous overactivity of the cell cycle CDKs is caused by a number of genetic and epigenetic processes in human cancer, and their suppression can result in both cell cycle arrest and apoptosis. This review focused on CDKs, describing their kinase activity, their role in phosphorylation inhibition, and CDK inhibitory proteins (CIP/KIP, INK 4, RPIC). We next compared the role of different CDKs, mainly p21, p27, p57, p16, p15, p18, and p19, in the cell cycle and apoptosis in cancer cells with respect to normal cells. The current work also draws attention to the use of CDKIs as therapeutics, overcoming the pharmacokinetic barriers of pan-CDK inhibitors, analyze new chemical classes that are effective at attacking the CDKs that control the cell cycle (cdk4/6 or cdk2). It also discusses CDKI's drawbacks and its combination therapy against cancer patients. These findings collectively demonstrate the complexity of cancer cell cycles and the need for targeted therapeutic intervention. In order to slow the progression of the disease or enhance clinical outcomes, new medicines may be discovered by researching the relationship between cell death and cell proliferation.
Collapse
Affiliation(s)
- Maria D'costa
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anusha Bothe
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - R Gnanasambandan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
14
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22:325. [PMID: 36266723 PMCID: PMC9583502 DOI: 10.1186/s12935-022-02747-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Abd El-wahab HA, Mansour HS, Ali AM, El-Awady R, Aboul-Fadl T. New Cell Cycle Checkpoint Pathways Regulators with 2-Oxo-indoline Scaffold as Potential Anticancer Agents: Design, Synthesis, Biological Activities and In Silico Studies. Bioorg Chem 2022; 120:105622. [DOI: 10.1016/j.bioorg.2022.105622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 12/18/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
|
17
|
Almehmadi SJ, Alsaedi AMR, Harras MF, Farghaly TA. Synthesis of a new series of pyrazolo[1,5-a]pyrimidines as CDK2 inhibitors and anti-leukemia. Bioorg Chem 2021; 117:105431. [PMID: 34688130 DOI: 10.1016/j.bioorg.2021.105431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Based on the structural study of previously known CDK2 inhibitors, a new series of pyrazolo[1,5-a]pyrimidine derivatives was designed and synthesized. The target compounds were biologically assessed as potent CDK2 inhibitors and promising anti-leukemia hits. The 7-(4-Bromo-phenyl)-3-(3-chloro/2-chloro-phenylazo)-pyrazolo[1,5-a]pyrimidin-2-ylamines 5 h and 5i revealed the best CDK2 inhibitory activity with comparable potency (IC50 = 22 and 24 nM, respectively) to that of dinaciclib (IC50 = 18 nM). Additionally, both analogues showed potent activities against CDK1, CDK5 and CDK9 at nanomolar concentrations (IC50 = 28-80 nM). The anti-leukemia screening of the target compounds showed strong to moderate cytotoxicity against the used leukemia cell lines (MOLT-4 and HL-60). Compound 5 h inhibited MOLT-4 and HL-60 by 1.4 and 2.3 folds (IC50 = 0.93 and 0.80 µM), respectively, compared to dinaciclib (IC50 = 1.30 and 1.84 µM). Furthermore, compound 5i was comparable to dinaciclib against MOLT-4 and exhibited twice its activity against HL-60. Besides, the cytotoxicity of the promising analogues on normal human blood cells indicated the safety of 5h and 5i as compared to the reference dinaciclib. The pharmacokinetic properties of 5h and 5i were predicted using ADME calculations revealing good oral bioavailability and high GI absorption. The molecular docking simulations indicated, as expected, that the dinaciclib analogues can well-accommodate the CDK2 binding site, forming a variety of interactions.
Collapse
Affiliation(s)
- Samar J Almehmadi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah 21514, Saudi Arabia
| | - Amani M R Alsaedi
- Department of Chemistry, Collage of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
18
|
Liu TT, Li R, Huo C, Li JP, Yao J, Ji XL, Qu YQ. Identification of CDK2-Related Immune Forecast Model and ceRNA in Lung Adenocarcinoma, a Pan-Cancer Analysis. Front Cell Dev Biol 2021; 9:682002. [PMID: 34409029 PMCID: PMC8366777 DOI: 10.3389/fcell.2021.682002] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Tumor microenvironment (TME) plays important roles in different cancers. Our study aimed to identify molecules with significant prognostic values and construct a relevant Nomogram, immune model, competing endogenous RNA (ceRNA) in lung adenocarcinoma (LUAD). Methods “GEO2R,” “limma” R packages were used to identify all differentially expressed mRNAs from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Genes with P-value <0.01, LogFC>2 or <-2 were included for further analyses. The function analysis of 250 overlapping mRNAs was shown by DAVID and Metascape software. By UALCAN, Oncomine and R packages, we explored the expression levels, survival analyses of CDK2 in 33 cancers. “Survival,” “survminer,” “rms” R packages were used to construct a Nomogram model of age, gender, stage, T, M, N. Univariate and multivariate Cox regression were used to establish prognosis-related immune forecast model in LUAD. CeRNA network was constructed by various online databases. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to explore correlations between CDK2 expression and IC50 of anti-tumor drugs. Results A total of 250 differentially expressed genes (DEGs) were identified to participate in many cancer-related pathways, such as activation of immune response, cell adhesion, migration, P13K-AKT signaling pathway. The target molecule CDK2 had prognostic value for the survival of patients in LUAD (P = 5.8e-15). Through Oncomine, TIMER, UALCAN, PrognoScan databases, the expression level of CDK2 in LUAD was higher than normal tissues. Pan-cancer analysis revealed that the expression, stage and survival of CDK2 in 33 cancers, which were statistically significant. Through TISIDB database, we selected 13 immunodepressants, 21 immunostimulants associated with CDK2 and explored 48 genes related to these 34 immunomodulators in cBioProtal database (P < 0.05). Gene Set Enrichment Analysis (GSEA) and Metascape indicated that 49 mRNAs were involved in PUJANA ATM PCC NETWORK (ES = 0.557, P = 0, FDR = 0), SIGNAL TRANSDUCTION (ES = –0.459, P = 0, FDR = 0), immune system process, cell proliferation. Forest map and Nomogram model showed the prognosis of patients with LUAD (Log-Rank = 1.399e-08, Concordance Index = 0.7). Cox regression showed that four mRNAs (SIT1, SNAI3, ASB2, and CDK2) were used to construct the forecast model to predict the prognosis of patients (P < 0.05). LUAD patients were divided into two different risk groups (low and high) had a statistical significance (P = 6.223e-04). By “survival ROC” R package, the total risk score of this prognostic model was AUC = 0.729 (SIT1 = 0.484, SNAI3 = 0.485, ASB2 = 0.267, CDK2 = 0.579). CytoHubba selected ceRNA mechanism medicated by potential biomarkers, 6 lncRNAs-7miRNAs-CDK2. The expression of CDK2 was associated with IC50 of 89 antitumor drugs, and we showed the top 20 drugs with P < 0.05. Conclusion In conclusion, our study identified CDK2 related immune forecast model, Nomogram model, forest map, ceRNA network, IC50 of anti-tumor drugs, to predict the prognosis and guide targeted therapy for LUAD patients.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Jian-Ping Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Jie Yao
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, China
| | - Yi-Qing Qu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China.,Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|