1
|
Mana N, Theerawatanasirikul S, Semkum P, Lekcharoensuk P. Naturally Derived Terpenoids Targeting the 3D pol of Foot-and-Mouth Disease Virus: An Integrated In Silico and In Vitro Investigation. Viruses 2024; 16:1128. [PMID: 39066290 PMCID: PMC11281344 DOI: 10.3390/v16071128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Foot-and-mouth disease virus (FMDV) belongs to the Picornaviridae family and is an important pathogen affecting cloven-hoof livestock. However, neither effective vaccines covering all serotypes nor specific antivirals against FMDV infections are currently available. In this study, we employed virtual screening to screen for secondary metabolite terpenoids targeting the RNA-dependent RNA polymerase (RdRp), or 3Dpol, of FMDV. Subsequently, we identified the potential antiviral activity of the 32 top-ranked terpenoids, revealing that continentalic acid, dehydroabietic acid (abietic diterpenoids), brusatol, bruceine D, and bruceine E (tetracyclic triterpenoids) significantly reduced cytopathic effects and viral infection in the terpenoid-treated, FMDV-infected BHK-21 cells in a dose-dependent manner, with nanomolar to low micromolar levels. The FMDV minigenome assay demonstrated that brusatol and bruceine D, in particular, effectively blocked FMDV 3Dpol activity, exhibiting IC50 values in the range of 0.37-0.39 µM and surpassing the efficacy of the antiviral drug control, ribavirin. Continentalic acid and bruceine E exhibited moderate inhibition of FMDV 3Dpol. The predicted protein-ligand interaction confirmed that these potential terpenoids interacted with the main catalytic and bystander residues of FMDV 3Dpol. Additionally, brusatol and bruceine D exhibited additive effects when combined with ribavirin. In conclusion, terpenoids from natural resources show promise for the development of anti-FMD agents.
Collapse
Affiliation(s)
- Natjira Mana
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.M.); (P.S.)
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.M.); (P.S.)
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.M.); (P.S.)
| |
Collapse
|
2
|
de Azevedo DQ, Campioni BM, Pedroz Lima FA, Medina-Franco JL, Castilho RO, Maltarollo VG. A critical assessment of bioactive compounds databases. Future Med Chem 2024; 16:1029-1051. [PMID: 38910575 PMCID: PMC11221550 DOI: 10.1080/17568919.2024.2342203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/03/2024] [Indexed: 06/25/2024] Open
Abstract
Compound databases (DBs) are essential tools for drug discovery. The number of DBs in public domain is increasing, so it is important to analyze these DBs. In this article, the main characteristics of 64 DBs will be presented. The methodological strategy used was a literature search. To analyze the characteristics obtained in the review, the DBs were categorized into two subsections: Open Access and Commercial DBs. Open access includes generalist DBs (containing compounds of diverse origins), DBs with specific applicability, DBs exclusive to natural products and those containing compounds with specific pharmacological action. The literature review showed that there are challenges to making these repositories available, such as standardizing information curation practices and funding to maintain and sustain them.
Collapse
Affiliation(s)
- Daniela Quadros de Azevedo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Beatriz Mattos Campioni
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Felipe Augusto Pedroz Lima
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Rachel Oliveira Castilho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| |
Collapse
|
3
|
Lyubitelev A, Studitsky V. Inhibition of Cancer Development by Natural Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2023; 24:10663. [PMID: 37445850 PMCID: PMC10341686 DOI: 10.3390/ijms241310663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant tumors remain one of the main sources of morbidity and mortality around the world. A chemotherapeutic approach to cancer treatment poses a multitude of challenges, primarily due to the low selectivity and genotoxicity of the majority of chemotherapeutic drugs currently used in the clinical practice, often leading to treatment-induced tumors formation. Highly selective antitumor drugs can largely resolve this issue, but their high selectivity leads to significant drawbacks due to the intrinsic tumor heterogeneity. In contrast, plant polyphenols can simultaneously affect many processes that are involved in the acquiring and maintaining of hallmark properties of malignant cells, and their toxic dose is typically much higher than the therapeutic one. In the present work we describe the mechanisms of the action of polyphenols on cancer cells, including their effects on genetic and epigenetic instability, tumor-promoting inflammation, and altered microbiota.
Collapse
Affiliation(s)
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
4
|
Plant-Derived Protectants in Combating Soil-Borne Fungal Infections in Tomato and Chilli. J Fungi (Basel) 2022; 8:jof8020213. [PMID: 35205967 PMCID: PMC8878687 DOI: 10.3390/jof8020213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/17/2022] Open
Abstract
Fungal infections transmitted through the soil continue to pose a threat to a variety of horticultural and agricultural products, including tomato and chilli. The indiscriminate use of synthetic pesticides has resulted in a slew of unintended consequences for the surrounding ecosystem. To achieve sustainable productivity, experts have turned their attention to natural alternatives. Due to their biodegradability, varied mode of action, and minimal toxicity to non-target organisms, plant-derived protectants (PDPs) are being hailed as a superior replacement for plant pesticides. This review outlines PDPs’ critical functions (including formulations) in regulating soil-borne fungal diseases, keeping tomato and chilli pathogens in the spotlight. An in-depth examination of the impact of PDPs on pathogen activity will be a priority. Additionally, this review emphasises the advantages of the in silico approach over conventional approaches for screening plants’ secondary metabolites with target-specific fungicidal activity. Despite the recent advances in our understanding of the fungicidal capabilities of various PDPs, it is taking much longer for that information to be applied to commercially available pesticides. The restrictions to solving this issue can be lifted by breakthroughs in formulation technology, governmental support, and a willingness to pursue green alternatives among farmers and industries.
Collapse
|
5
|
Peña-Varas C, Kanstrup C, Vergara-Jaque A, González-Avendaño M, Crocoll C, Mirza O, Dreyer I, Nour-Eldin H, Ramírez D. Structural Insights into the Substrate Transport Mechanisms in GTR Transporters through Ensemble Docking. Int J Mol Sci 2022; 23:ijms23031595. [PMID: 35163519 PMCID: PMC8836200 DOI: 10.3390/ijms23031595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Glucosinolate transporters (GTRs) are part of the nitrate/peptide transporter (NPF) family, members of which also transport specialized secondary metabolites as substrates. Glucosinolates are defense compounds derived from amino acids. We selected 4-methylthiobutyl (4MTB) and indol-3-ylmethyl (I3M) glucosinolates to study how GTR1 from Arabidopsis thaliana transports these substrates in computational simulation approaches. The designed pipeline reported here includes massive docking of 4MTB and I3M in an ensemble of GTR1 conformations (in both inward and outward conformations) extracted from molecular dynamics simulations, followed by clustered and substrate–protein interactions profiling. The identified key residues were mutated, and their role in substrate transport was tested. We were able to identify key residues that integrate a major binding site of these substrates, which is critical for transport activity. In silico approaches employed here represent a breakthrough in the plant transportomics field, as the identification of key residues usually takes a long time if performed from a purely wet-lab experimental perspective. The inclusion of structural bioinformatics in the analyses of plant transporters significantly speeds up the knowledge-gaining process and optimizes valuable time and resources.
Collapse
Affiliation(s)
- Carlos Peña-Varas
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-piso 6, Santiago 8900000, Chile;
| | - Christa Kanstrup
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Mariela González-Avendaño
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Ingo Dreyer
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Hussam Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-piso 6, Santiago 8900000, Chile;
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8900000, Chile
- Correspondence: ; Tel.: +56-(22)-3036667
| |
Collapse
|
6
|
Singla RK, Joon S, Shen L, Shen B. Translational Informatics for Natural Products as Antidepressant Agents. Front Cell Dev Biol 2022; 9:738838. [PMID: 35127696 PMCID: PMC8811306 DOI: 10.3389/fcell.2021.738838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Depression, a neurological disorder, is a universally common and debilitating illness where social and economic issues could also become one of its etiologic factors. From a global perspective, it is the fourth leading cause of long-term disability in human beings. For centuries, natural products have proven their true potential to combat various diseases and disorders, including depression and its associated ailments. Translational informatics applies informatics models at molecular, imaging, individual, and population levels to promote the translation of basic research to clinical applications. The present review summarizes natural-antidepressant-based translational informatics studies and addresses challenges and opportunities for future research in the field.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
The Combination of Tradition and Future: Data-Driven Natural-Product-Based Treatments for Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9990020. [PMID: 34335855 PMCID: PMC8294954 DOI: 10.1155/2021/9990020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder in elderly people. The personalized diagnosis and treatment remain challenges all over the world. In recent years, natural products are becoming potential therapies for many complex diseases due to their stability and low drug resistance. With the development of informatics technologies, data-driven natural product discovery and healthcare is becoming reality. For PD, however, the relevant research and tools for natural products are quite limited. Here in this review, we summarize current available databases, tools, and models for general natural product discovery and synthesis. These useful resources could be used and integrated for future PD-specific natural product investigations. At the same time, the challenges and opportunities for future natural-product-based PD care will also be discussed.
Collapse
|
8
|
Jin Y, Wang Z, Dong AY, Huang YQ, Hao GF, Song BA. Web repositories of natural agents promote pests and pathogenic microbes management. Brief Bioinform 2021; 22:6294160. [PMID: 34098581 DOI: 10.1093/bib/bbab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
The grand challenge to meet the increasing demands for food by a rapidly growing global population requires protecting crops from pests. Natural active substances play a significant role in the sustainable pests and pathogenic microbes management. In recent years, natural products- (NPs), antimicrobial peptides- (AMPs), medicinal plant- and plant essential oils (EOs)-related online resources have greatly facilitated the development of pests and pathogenic microbes control agents in an efficient and economical manner. However, a comprehensive comparison, analysis and summary of these existing web resources are still lacking. Here, we surveyed these databases of NPs, AMPs, medicinal plants and plant EOs with insecticidal, antibacterial, antiviral and antifungal activity, and we compared their functionality, data volume, data sources and applicability. We comprehensively discussed the limitation of these web resources. This study provides a toolbox for bench scientists working in the pesticide, botany, biomedical and pharmaceutical engineering fields. The aim of the review is to hope that these web resources will facilitate the discovery and development of potential active ingredients of pests and pathogenic microbes control agents.
Collapse
Affiliation(s)
- Yin Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Zheng Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - An-Yu Dong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yuan-Qin Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Bao-An Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|