1
|
Zhang SS, He Y, Wei MX. Novel coumarin-piperazine-2(5H)-furanone hybrids as potential anti-lung cancer agents: Synthesis, biological evaluation and molecular docking studies. Fitoterapia 2024; 177:106105. [PMID: 38969273 DOI: 10.1016/j.fitote.2024.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Novel coumarin-piperazine-2(5H)-furanone hybrids 5a-l were efficiently synthesized by introducing a furanone scaffold into coumarin using piperazine as a linker. The cytotoxicity of all hybrids 5a-l were evaluated by MTT assay on human lung cancer A549 cells and normal human lung fibroblast WI-38 cells with cytarabine (CAR) as a positive control. Hybrid 5l (IC50 = 11.28 μM) was the most toxic to A549 cells, 18-fold more toxic than the reference CAR (IC50 = 202.57 μM). Moreover, hybrid 5l (IC50 = 411.93 μM) was less toxic to WI-38 cells, with a much higher selectivity (5l, SI ≈ 37, WI-38/A549) than CAR (SI ≈ 2). Structure-activity relationship analysis showed that both the cytotoxicity against A549 cells and selectivity (WI-38/A549) were greatly improved when the bornyl group was incorporated in the hybrids (5c, 5f, 5i and 5l). Further, hybrid 5l was more toxic and selective against four types of human lung cancer cells (A549, Calu-1, PC-9 and H460; IC50 = 5.72-45.46 μM; SI ≈ 9-72) than three other types of human cancer cells (SK-BR-3, 786-O and SK-OV-3, IC50 = 39.07-130.82 μM; SI ≈ 0-2), showing remarkable specificity. In particular, hybrid 5l (IC50 = 5.72 μM) showed the highest cytotoxicity against H460 cells with the highest selectivity of up to 72 (WI-38/H460). Flow cytometric analysis showed that hybrid 5l induced apoptosis in H460 cells in a concentration-dependent manner. Molecular docking studies revealed a high binding affinity of hybrid 5l with CDK2 protein. Hybrid 5l is expected to be a leading candidate for anti-lung cancer agents.
Collapse
Affiliation(s)
- Si-Si Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu He
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Meng-Xue Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Mısır BA, Derin Y, Ökten S, Aydın A, Koçyiğit ÜM, Şahin H, Tutar A. Novel diarylated tacrine derivatives: Synthesis, characterization, anticancer, antiepileptic, antibacterial, and antifungal activities. J Biochem Mol Toxicol 2024; 38:e23706. [PMID: 38591869 DOI: 10.1002/jbt.23706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
In this study, our goal was to synthesize novel aryl tacrine derivatives and assess their potential as anticancer, antibacterial agents, and enzyme inhibitors. We adopted a two-step approach, initiating with the synthesis of dibromotacrine derivatives 3 and 4 through the Friedlander reaction. These intermediates underwent further transformation into diarylated tacrine derivatives 3a-e and 4a-e using a Suzuki-Miyaura cross-coupling reaction. Thorough characterization of these novel diarylated tacrines was achieved using various spectroscopic techniques. Our findings highlighted the potent anticancer effects of these innovative compounds across a range of cancer cell lines, including lung, gynecologic, bone, colon, and breast cancers, while demonstrating low cytotoxicity against normal cells. Notably, these compounds surpassed the control drug, 5-Fluorouracil, in terms of antiproliferative activity in numerous cancer cell lines. Moreover, our investigation included an analysis of the inhibitory properties of these novel compounds against various microorganisms and cytosolic carbonic anhydrase enzymes. The results suggest their potential for further exploration as cancer-specific, enzyme inhibitory, and antibacterial therapeutic agents. Notably, four compounds, namely, 5,7-bis(4-(methylthio)phenyl)tacrine (3d), 5,7-bis(4-(trifluoromethoxy)phenyl)tacrine (3e), 2,4-bis(4-(trifluoromethoxy)phenyl)-7,8,9,10-tetrahydro-6H-cyclohepta[b]quinolin-11-amine (4e), and 6,8-dibromotacrine (3), emerged as the most promising candidates for preclinical studies.
Collapse
Affiliation(s)
- Büşra A Mısır
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkiye
- Department of Chemistry, Faculty of Science, Kahramanmaras Sütçü İmam University, Kahramanmaraş, Turkey
| | - Yavuz Derin
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkiye
| | - Salih Ökten
- Department of Maths and Science Education, Faculty of Education, Kırıkkale University, Kırıkkale, Turkiye
| | - Ali Aydın
- Department of Basic Medical Science, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkiye
| | - Ümit M Koçyiğit
- Department of Basic Pharmaceutical Sciences, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Hatice Şahin
- Department of Basic Pharmaceutical Sciences, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Ahmet Tutar
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkiye
| |
Collapse
|
3
|
Radwan EM, Abo-Elabass E, Abd El-Baky AE, Alshwyeh HA, Almaimani RA, Almaimani G, Ibrahim IAA, Albogami A, Jaremko M, Alshawwa SZ, Saied EM. Unveiling the antitumor potential of novel N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamides as dual inhibitors of VEGFR2 kinase and cytochrome P450 for targeted treatment of hepatocellular carcinoma. Front Chem 2023; 11:1231030. [PMID: 37601910 PMCID: PMC10436493 DOI: 10.3389/fchem.2023.1231030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.
Collapse
Affiliation(s)
- Eman M. Radwan
- The Division of Organic Chemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Eman Abo-Elabass
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Atef E. Abd El-Baky
- Biochemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Albogami
- Biology Department, Faculty of science, Al-Baha University, Al Aqiq, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences (BESE) and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Gomaa MS, Ali IAI, El Enany G, El Ashry ESH, El Rayes SM, Fathalla W, Ahmed AHA, Abubshait SA, Abubshait HA, Nafie MS. Facile Synthesis of Some Coumarin Derivatives and Their Cytotoxicity through VEGFR2 and Topoisomerase II Inhibition. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238279. [PMID: 36500372 PMCID: PMC9737644 DOI: 10.3390/molecules27238279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Novel semisynthetic coumarin derivatives were synthesized to be developed as chemotherapeutic anticancer agents through topoisomerase II, VEGFR2 inhibition that leads to apoptotic cancer cell death. The coumarin amino acids and dipeptides derivatives were prepared by the reaction of coumarin-3-carboxylic acid with amino acid methyl esters following the N,N-dicyclohexylcarbodiimide (DCC) method and 1-hydroxy-benzotriazole (HOBt), as coupling reagents. The synthesized compounds were screened towards VEGFR2, and topoisomerase IIα proteins to highlight their binding affinities and virtual mechanism of binding. Interestingly, compounds 4k (Tyr) and 6c (β-Ala-L-Met) shared the activity towards the three proteins by forming the same interactions with the key amino acids, such as the co-crystallized ligands. Both compounds 4k and 6c exhibited potent cytotoxic activities against MCF-7 cells with IC50 values of 4.98 and 5.85 µM, respectively causing cell death by 97.82 and 97.35%, respectively. Validating the molecular docking studies, both compounds demonstrated promising VEGFR-2 inhibition with IC50 values of 23.6 and 34.2 µM, compared to Sorafenib (30 µM) and topoisomerase-II inhibition with IC50 values of 4.1 and 8.6 µM compared to Doxorubicin (9.65 µM). Hence, these two promising compounds could be further tested as effective and selective target-oriented active agents against cancer.
Collapse
Affiliation(s)
- Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibrahim A. I. Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Gaber El Enany
- Department of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraidah 52571, Saudi Arabia
- Scientific Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - El Sayed H. El Ashry
- Chemistry Department, Faculty of Science, University of Alexandria, Alexandria 21526, Egypt
| | - Samir M. El Rayes
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or
| | - Walid Fathalla
- Scientific Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - Abdulghany H. A. Ahmed
- Chemistry Department, Faculty of Medicinal Science, University of Science and Technology, Aden 15201, Yemen
| | - Samar A. Abubshait
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Haya A. Abubshait
- Basic Science Department, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
5
|
Wu L, Liu W, Huang Y, Zhu C, Ma Q, Wu Q, Tian L, Feng X, Liu M, Wang N, Xu X, Liu X, Xu C, Qiu J, Xu Z, Liu W, Zhao Q. Development and structure-activity relationship of tacrine derivatives as highly potent CDK2/9 inhibitors for the treatment of cancer. Eur J Med Chem 2022; 242:114701. [DOI: 10.1016/j.ejmech.2022.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
|
6
|
Ammazzalorso A, Fantacuzzi M. Anticancer Inhibitors. Molecules 2022; 27:molecules27144650. [PMID: 35889522 PMCID: PMC9317223 DOI: 10.3390/molecules27144650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
|
7
|
He X, Xiang F, Xu Z. Preparation and Synergistic Anti-Tumor Effect of Iridium Oxide Nanocomposites under Microscope. Int J Anal Chem 2022; 2022:9694425. [PMID: 35873114 PMCID: PMC9300309 DOI: 10.1155/2022/9694425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
In order to solve the great difficulties in cancer prevention, diagnosis, and treatment, a preparation method of iridium oxide nanocomposites under the microscope was proposed in this paper. Through a retrospective analysis of an experiment, IrOx nanoparticles were prepared by direct hydrothermal hydrolysis and loaded with chemotherapy drug adriamycin to construct nanodrug-loaded complex IrOx@DOX. At the same time, IrOx, as a sound-sensitive agent, can produce ROS under US irradiation, amplify intracellular oxidative stress, accelerate tumor cell death, and finally achieve the effect of SDT chemotherapy synergistic therapy. The experimental results show that IrOx@DOX has the dual response of pH and US, and the inhibition rates are 27%, 57%, and 76%, respectively. At the same time, ultrasound not only can enhance the uptake of nanoparticles by cells but also can promote the release of DOX in cells, which provides a basis for subsequent SDT chemotherapy synergistic therapy. Conclusion. Iridium oxide nanocomposite DOX combined with SDT can obtain a good therapeutic effect, which has positive feedback on the efficacy of chemotherapy and the therapeutic effect of cancer surgery.
Collapse
Affiliation(s)
- Xudong He
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Feng Xiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhangyi Xu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
8
|
Pan Y, Liu T, Wang X, Sun J. Research progress of coumarins and their derivatives in the treatment of diabetes. J Enzyme Inhib Med Chem 2022; 37:616-628. [PMID: 35067136 PMCID: PMC8788346 DOI: 10.1080/14756366.2021.2024526] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a group of metabolic diseases characterised by chronic hyperglycaemia caused by multiple causes, which is caused by insulin secretion and/or utilisation defects. It is characterised by increased fasting and postprandial blood glucose levels due to insulin deficiency or insulin resistance. It is reported that the harm of diabetes mainly comes from its complications, and the cardiovascular disease caused by diabetes is the primary cause of its harm. China has the largest number of diabetic patients in the world, and the prevention and control of diabetes are facing great challenges. In recent years, many kinds of literature have been published abroad, which have proved that coumarin and its derivatives are effective in the treatment of diabetic complications such as nephropathy and cardiovascular disease. In this paper, the types of antidiabetic drugs and the anti-diabetic mechanism of coumarins were reviewed.
Collapse
Affiliation(s)
- Yinbo Pan
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Teng Liu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
9
|
Kozurkova M. Acridine derivatives as inhibitors/poisons of topoisomerase II. J Appl Toxicol 2021; 42:544-552. [PMID: 34514603 DOI: 10.1002/jat.4238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022]
Abstract
The potential of acridines (amsacrine) as a topoisomerase II inhibitor or poison was first discovered in 1984, and since then, a considerable number of acridine derivatives have been tested as topoisomerase inhibitors/poisons, containing different substituents on the acridine chromophore. This review will discuss a series of studies published over the course of the last decade, which have investigated various novel acridine derivatives against topoisomerase II activity.
Collapse
Affiliation(s)
- Maria Kozurkova
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Kosice, Slovak Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Simic M, Petkovic M, Jovanovic P, Jovanovic M, Tasic G, Besu I, Zizak Z, Aleksic I, Nikodinovic-Runic J, Savic V. Fragment-type 4-azolylcoumarin derivatives with anticancer properties. Arch Pharm (Weinheim) 2021; 354:e2100238. [PMID: 34374111 DOI: 10.1002/ardp.202100238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
Several coumarin derivatives with a directly attached azole substituent at C-4 were synthesized and biologically studied for their anticancer properties. The cell lines used for this investigation (HeLa, K-562, MDA-MB-53, and MCF-7) demonstrated different sensitivities. The best response in the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay was shown by K-562 cells, with compounds displaying activity (3c, IC50 3.06 μM; 4a, IC50 5.24 μM; 4c, IC50 4.7 μM) similar to that of cisplatin (IC50 ~6 μM), which was used as the standard. The studied azole-substituted coumarins demonstrated weaker activity toward other cell lines, except for compound 4c, which was equally potent in the case of MCF-7 cells. Additional biological evaluations supported interference with the cell cycle as a potential mechanism of action and confirmed the absence of toxicity in zebrafish embryos. On the basis of these initial results, 4-azole coumarins should be explored further. Although their activity would need additional optimization, the fact that these compounds are fragment-like structures with MW <300 and clog P <3 offers enough flexibility to fine-tune their drug-like properties.
Collapse
Affiliation(s)
- Milena Simic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Milos Petkovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Predrag Jovanovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Milos Jovanovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Gordana Tasic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Irina Besu
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Zeljko Zizak
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ivana Aleksic
- Laboratory for Eco-Biotechnology and Drug Development, Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Laboratory for Eco-Biotechnology and Drug Development, Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vladimir Savic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|