1
|
Xie H, Hu M, Yu J, Yang X, Li J, Yu N, Han L, Peng D. Mass spectrometry-based metabolomics reveal Dendrobium huoshanense polysaccharide effects and potential mechanism of N-methyl-N'-nitro-N-nitrosoguanidine -induced damage in GES-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116342. [PMID: 36889419 DOI: 10.1016/j.jep.2023.116342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium huoshanense C. Z. Tang et S. J. Cheng is an important edible medicinal plant that thickens the stomach and intestines, and its active ingredient, polysaccharide, can have anti-inflammatory, immunoregulatory, and antitumor effects. However, the gastroprotective effects and potential mechanisms of Dendrobium huoshanense polysaccharides (DHP) remain unclear. AIM OF THE STUDY An N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced human gastric mucosal epithelial cells (GES-1) damage model was used in this research, aiming to investigate whether DHP has a protective effect on MNNG-induced GES-1 cell injury and its underlying mechanism based on the combination of multiple methods. MATERIALS AND METHODS DHP was extracted using water extraction and alcohol precipitation methods, and the proteins were removed using the Sevag method. The morphology was observed using scanning electron microscopy. A MNNG-induced GES-1 cell damage model was developed. Cell viability and proliferation of the experimental cells were investigated using a cell counting kit-8 (CCK-8). Cell nuclear morphology was detected using the fluorescent dye Hoechst 33342. Cell scratch wounds and migration were detected using a Transwell chamber. The expression levels of apoptosis proteins (Bcl-2, Bax, Caspase-3) in the experimental cells were detected by Western blotting. Ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was performed to investigate the potential mechanism of action of DHP. RESULTS The CCK-8 kit analysis showed that DHP increased GES-1 cell viability and ameliorated GES-1 cell injury by MNNG. In addition, scratch assay and Transwell chambers results suggested that DHP improved the MNNG-induced motility and migration ability of GES-1 cells. Likewise, the results of the apoptotic protein assay indicated that DHP had a protective effect against gastric mucosal epithelial cell injury. To further investigate the potential mechanism of action of DHP, we analyzed the metabolite differences between GES-1 cells, GES-1 cells with MNNG-induced injury, and DHP + MMNG-treated cells using UHPLC-HRMS. The results indicated that DHP upregulated 1-methylnicotinamide, famotidine, N4-acetylsulfamethoxazole, acetyl-L-carnitine, choline and cer (d18:1/19:0) metabolites and significantly down-regulated 6-O-desmethyldonepezil, valet hamate, L-cystine, propoxur, and oleic acid. CONCLUSIONS DHP may protect against gastric mucosal cell injury through nicotinamide and energy metabolism-related pathways. This research may provide a useful reference for further in-depth studies on the treatment of gastric cancer, precancerous lesions, and other gastric diseases.
Collapse
Affiliation(s)
- Huiqun Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengqing Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jiao Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xinyu Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinmiao Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China.
| |
Collapse
|
2
|
Tsianou CC, Kvetina J, Radochova V, Kohoutova D, Rejchrt S, Valis M, Zdarova Karasova J, Tacheci I, Knoblochova V, Soukup O, Bures J. The effect of single and repeated doses of rivastigmine on gastric myoelectric activity in experimental pigs. PLoS One 2023; 18:e0286386. [PMID: 37262057 PMCID: PMC10234519 DOI: 10.1371/journal.pone.0286386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Rivastigmine is a pseudo-irreversible cholinesterase inhibitor used for therapy of Alzheimer's disease and non-Alzheimer dementia syndromes. In humans, rivastigmine can cause significant gastrointestinal side effects that can limit its clinical use. The aim of this study was to assess the impact of rivastigmine on gastric motor function by means of electrogastrography (EGG) in experimental pigs. METHODS Six experimental adult female pigs (Sus scrofa f. domestica, hybrids of Czech White and Landrace breeds; 3-month-old; mean weight 30.7 ± 1.2 kg) were enrolled into the study twice and created two experimental groups. In group A, a single intragastric dose of 6 mg rivastigmine hydrogen tartate was administered in the morning to fasting pigs before EGG recording. In group B, rivastigmine was administered to overnight fasting animals in a dietary bolus in the morning for 7 days (6 mg per day). On day 8, an intragastric dose of 12 mg rivastigmine was given in the morning to fasting pigs before EGG. EGG recording was accomplished by means of an EGG standalone system. Recordings from both groups were evaluated in dominant frequency and EGG power (areas of amplitudes). RESULTS In total, 1,980 one-minute EGG intervals were evaluated. In group A, basal EGG power (median 1290.5; interquartile range 736.5-2330 μV2) was significantly higher in comparison with the power of intervals T6 (882; 577-1375; p = 0.001) and T10 (992.5; 385-2859; p = 0.032). In group B, the dominant frequency increased significantly from basal values (1.97 ± 1.57 cycles per minute) to intervals T9 (3.26 ± 2.16; p < 0.001) and T10 (2.14 ± 1.16; p = 0.012), respectively. In group B, basal EGG power (median 1030.5; interquartile range 549-5093) was significantly higher in comparison with the power of intervals T7 (692.5; 434-1476; p = 0.002) and T8 (799; 435-1463 μV2; p = 0.004). CONCLUSIONS Both single as well as repeated intragastric administration of rivastigmine hydrogen tartrate caused a significant decrease of EGG power (areas of amplitudes) in experimental pigs. EGG power may serve as an indirect indicator of gastric motor competence. These findings might provide a possible explanation of rivastigmine-associated dyspepsia in humans.
Collapse
Affiliation(s)
| | - Jaroslav Kvetina
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Vera Radochova
- Animal Laboratory, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Darina Kohoutova
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Stanislav Rejchrt
- 2nd Department of Internal Medicine—Gastroenterology, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Martin Valis
- Department of Neurology, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Ilja Tacheci
- 2nd Department of Internal Medicine—Gastroenterology, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | | | - Ondrej Soukup
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Jan Bures
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
- Institute of Gastrointestinal Oncology, Military University Hospital Praha, Praha, Czech Republic
- Department of Medicine, First Faculty of Medicine, Charles University, Nové Město, Czech Republic
- Military University Hospital Praha, Praha, Czech Republic
| |
Collapse
|
3
|
Bureš J, Radochová V, Květina J, Kohoutová D, Vališ M, Rejchrt S, Žďárová Karasová J, Soukup O, Suchánek Š, Zavoral M. Wireless Monitoring of Gastrointestinal Transit Time, Intra-luminal pH, Pressure and Temperature in Experimental Pigs: A Pilot Study. ACTA MEDICA (HRADEC KRALOVE) 2023; 66:11-18. [PMID: 37384804 DOI: 10.14712/18059694.2023.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
BACKGROUND There is no single gold standard for investigation of gastrointestinal motility function. Wireless motility monitoring involves a novel concept which provides a complex information on gastrointestinal function (gastrointestinal transit time, intra-luminal pH, pressure and temperature). Gastrointestinal motility functions of experimental pigs are very similar to those of humans. That is why porcine studies have already provided suitable experimental models for several preclinical projects. AIMS The aim of our study was to adopt methods of non-invasive wireless monitoring of gastrointestinal functions in experimental pigs. METHODS Five experimental adult female pigs were enrolled into the study. Wireless motility capsules were delivered into the porcine stomach endoscopically. Gastrointestinal transit and intra-luminal conditions were recorded for five days. RESULTS Records of animals provided good (3 pigs) or very good quality files (2 pigs). 31150 variables were evaluated. Mean time of the presence of capsules in the stomach was 926 ± 295 min, transfer of a capsule from the stomach into the duodenum lasted 5-34 min. Mean small intestinal transit time was 251 ± 43 min. Food intake was associated with an increase of gastric luminal temperature and a decrease of intra-gastric pressure. The highest intra-luminal pH was present in the ileum. The highest temperature and the lowest intra-luminal pressure were found in the colon. All data displayed a substantial inter-individual variability. CONCLUSIONS This pilot study has proven that a long-term function monitoring of the gastrointestinal tract by means of wireless motility capsules in experimental pigs is feasible. However, both ketamine-based induction of general anaesthesia as well as long-lasting general anaesthesia (> 6 hours) should be avoided to prevent retention of a capsule in the porcine stomach.
Collapse
Affiliation(s)
- Jan Bureš
- Biomedical Research Centre, University Hospital Hradec Králové, Czech Republic.
- Department of Medicine, Charles University, First Faculty of Medicine, Praha and Military University Hospital Praha, Czech Republic.
- Institute of Gastrointestinal Oncology, Military University Hospital Praha, Czech Republic.
| | - Věra Radochová
- Animal Laboratory, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - Jaroslav Květina
- Biomedical Research Centre, University Hospital Hradec Králové, Czech Republic
| | - Darina Kohoutová
- Biomedical Research Centre, University Hospital Hradec Králové, Czech Republic
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Martin Vališ
- Department of Neurology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Stanislav Rejchrt
- 2nd Department of Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Jana Žďárová Karasová
- Department of Toxicology and Military Pharmacy, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - Ondřej Soukup
- Biomedical Research Centre, University Hospital Hradec Králové, Czech Republic
| | - Štěpán Suchánek
- Department of Medicine, Charles University, First Faculty of Medicine, Praha and Military University Hospital Praha, Czech Republic
- Institute of Gastrointestinal Oncology, Military University Hospital Praha, Czech Republic
| | - Miroslav Zavoral
- Department of Medicine, Charles University, First Faculty of Medicine, Praha and Military University Hospital Praha, Czech Republic
- Institute of Gastrointestinal Oncology, Military University Hospital Praha, Czech Republic
| |
Collapse
|
4
|
Recent Advances in the Modulation of Cholinergic Signaling. Molecules 2022; 27:molecules27185971. [PMID: 36144707 PMCID: PMC9505111 DOI: 10.3390/molecules27185971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
|
5
|
Kassa J, Karasova JZ. Memantine and Its Combination with Acetylcholinesterase Inhibitors in Pharmacological Pretreatment of Soman Poisoning in Mice. Neurotox Res 2021; 39:1487-1494. [PMID: 34292503 DOI: 10.1007/s12640-021-00394-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Nerve agents pose a real threat to both the military and civil populations, but the current treatment of the poisoning is unsatisfactory. Thus, we studied the efficacy of prophylactic use of memantine alone or in combination with clinically used reversible acetylcholinesterase inhibitors (pyridostigmine, donepezil, rivastigmine) against soman. In addition, we tested their influence on post-exposure therapy consisting of atropine and asoxime. Pyridostigmine alone failed to decrease the acute toxicity of soman. But all clinically used acetylcholinesterase inhibitors administered alone reduced the acute toxicity, with donepezil showing the best efficacy. The combination of memantine with reversible acetylcholinesterase inhibitors attenuated soman acute toxicity significantly. The pretreatment administered alone or in combinations influenced the efficacy of post-exposure treatment in a similar fashion: (i) pyridostigmine or memantine alone did not affect the antidotal treatment, (ii) centrally acting reversible acetylcholinesterase inhibitors alone increased the antidotal treatment slightly, (iii) combination of memantine with reversible acetylcholinesterase inhibitors increased the antidotal treatment more markedly. In conclusion, memantine alone failed to decrease the acute toxicity of soman or increase post-exposure antidotal treatment efficacy. The combination of memantine with donepezil significantly increased post-exposure effectiveness (together 5.12, pretreatment alone 1.72). Both drugs, when applied together, mitigate soman toxicity and boost post-exposure treatment.
Collapse
Affiliation(s)
- Jiri Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Jana Zdarova Karasova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.
| |
Collapse
|
6
|
Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs. Pharmaceuticals (Basel) 2021; 14:ph14060590. [PMID: 34207410 PMCID: PMC8234489 DOI: 10.3390/ph14060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Galantamine has been used as a treatment for Alzheimer disease. It has a unique, dual mode of action (inhibitor of acetylcholinesterase and allosteric modulator of nicotinic acetylcholine receptors). Nausea (in about 20%), vomiting (10%) and diarrhoea (5–7%) are the most common side effects. The aim of this study was to assess the effect of galantamine on porcine gastric myoelectric activity without (Group A) and with (Group B) dextran sodium sulphate (DSS)-induced gastrointestinal injury. Galantamine hydrobromide was administrated to twelve pigs as a single intragastric dose (24 mg). Gastric myoelectric activity was investigated by electrogastrography (EGG). Basal (15 min before galantamine administration) and study recordings after galantamine administration (300 min) were evaluated using a running spectral analysis. Results were expressed as dominant frequency of gastric slow waves and power analysis (areas of amplitudes). Altogether, 3780 one-minute EGG recordings were evaluated. In Group A, power was steady from basal values for 180 min, then gradually decreased till 270 min (p = 0.007). In Group B, there was a rapid gradual fall from basal values to those after 120 min (p = 0.007) till 300 min (p ˂ 0.001). In conclusion, galantamine alone revealed an unfavourable effect on porcine myoelectric activity assessed by gastric power. It can be a plausible explanation of galantamine-associated dyspepsia in humans. DSS caused further profound decrease of EGG power. That may indicate that underlying inflammatory, ischaemic or NSAIDs-induced condition of the intestine in humans can have aggravated the effect of galantamine on gastric myoelectric activity.
Collapse
|