1
|
Wadhwa A, Moreno-Villanueva M, Crucian B, Wu H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun Ageing 2024; 21:50. [PMID: 39033285 PMCID: PMC11264846 DOI: 10.1186/s12979-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
Collapse
Affiliation(s)
- Anna Wadhwa
- Harvard Medical School, Boston, MA, 02115, USA.
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA
| |
Collapse
|
2
|
Su X, Fang T, Fang L, Wang D, Jiang X, Liu C, Zhang H, Guo R, Wang J. Effects of short-term exposure to simulated microgravity on the physiology of Bacillus subtilis and multiomic analysis. Can J Microbiol 2023; 69:464-478. [PMID: 37463516 DOI: 10.1139/cjm-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In our study, Bacillus subtilis was disposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessel bioreactors for 14 days, while the control group was disposed to the same bioreactors in a normal gravity (NG) environment for 14 days. The B. subtilis strain exposed to the SMG (labeled BSS) showed an enhanced growth ability, increased biofilm formation ability, increased sensitivity to ampicillin sulbactam and cefotaxime, and some metabolic alterations compared with the B. subtilis strain under NG conditions (labeled BSN) and the original strain of B. subtilis (labeled BSO). The differentially expressed proteins (DEPs) associated with an increased growth rate, such as DNA strand exchange activity, oxidoreductase activity, proton-transporting ATP synthase complex, and biosynthetic process, were significantly upregulated in BSS. The enhanced biofilm formation ability may be related with the DEPs of spore germination and protein processing in BSS, and differentially expressed genes involved in protein localization and peptide secretion were also significantly enriched. The results revealed that SMG may increase the level of related functional proteins by upregulating or downregulating affiliated genes to change physiological characteristics and modulate growth ability, biofilm formation ability (epsB, epsC, epsN), antibiotic sensitivity (penP) and metabolism. Our experiment may gives new ideas for the study of space microbiology.
Collapse
Affiliation(s)
- Xiaolei Su
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Tingzheng Fang
- Sixth Department of Health Care, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Lin Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Dapeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Xuege Jiang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Honglei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Rui Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Junfeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Daniels VR, Williams ES. Exploring the complexities of drug formulation selection, storage, and shelf-life for exploration spaceflight. Br J Clin Pharmacol 2023. [PMID: 37940128 DOI: 10.1111/bcp.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Medications have been a part of space travel dating back to the Apollo missions. Currently, medical kits aboard the International Space Station (ISS) contain medications and supplies to treat a variety of possible medical events. As we prepare for more distant exploration missions to Mars and beyond, risk management planning for astronaut healthcare should include the assembly of a medication formulary that is comprehensive enough to prevent or treat anticipated medical events, remains safe and chemically stable, and retains sufficient potency to last for the duration of the mission. Emerging innovation and technologies in pharmaceutical development, delivery, quality maintenance, and validation offer promise for addressing these challenges. The present editorial will summarize the current state of knowledge regarding innovative formulary optimization strategies, pharmaceutical stability assessment techniques, and storage and packaging solutions that could enhance drug safety and efficacy for future exploration spaceflight missions.
Collapse
|
4
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
5
|
Oronsky B, Caroen S, Abrouk N, Reid TR. RRx-001 and the "Right stuff": Protection and treatment in outer space. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:69-75. [PMID: 36336372 DOI: 10.1016/j.lssr.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/16/2023]
Abstract
From antibiotics to aspirin to antimalarials and to anticancer agents, about half of the world's best-selling drugs are derived from nature. However, accelerating climatic disruption, habitat destruction, pollution, and biodiversity loss all negatively impact the potential of natural sources to continue to serve as repositories of novel pharmaceuticals. On that basis, the final frontier for drug development is perhaps not the rainforests, coral reefs, and other natural habitats but rather the aerospace industry with its virtually unlimited and inexhaustible man-made 'library' of potentially bioactive compounds. The first aerospace-sourced therapeutic to reach the clinic is RRx-001, an inhibitor of the NOD-like receptor - Nucleotide-binding oligomerization domain with Leucine rich Repeat and Pyrin domain (NLRP3) inflammasome in a Phase 3 trial for the treatment of small cell lung cancer (SCLC) and in a soon-to-start Phase 3 trial for protection against chemoradiotherapy-induced severe oral mucositis in first line head and neck cancer. As manned missions to the Moon, Mars, and asteroids as well as space tourism beckon, it is perhaps fitting that a compound like RRx-001, which is derived from 1,3,3-Trinitroazetidine (TNAZ), an explosive propellant for rockets, is a potential "all purpose" option to mitigate the major biomedical effects of space radiation exposures including cancer development and other tissue degenerations both within mission and after mission. This article highlights the promise of RRx-001 to attenuate the acute and late effects of radiation exposure on astronauts including the development of cancer.
Collapse
|
6
|
Tesei D, Jewczynko A, Lynch AM, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life (Basel) 2022; 12:life12040495. [PMID: 35454986 PMCID: PMC9031868 DOI: 10.3390/life12040495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases. For these reasons, understanding the impact of spaceflight and space conditions on the microbiome of astronauts is important to assess significant health risks that can emerge during long-term missions and to develop countermeasures. Here, we review various conditions that are caused by long-term space exploration and discuss the role of the microbiome in promoting or ameliorating these conditions, as well as space-related factors that impact microbiome composition. The topics explored pertain to microgravity, radiation, immunity, bone health, cognitive function, gender differences and pharmacomicrobiomics. Connections are made between the trifecta of spaceflight, the host and the microbiome, and the significance of these interactions for successful long-term space missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Anna Jewczynko
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anne M. Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Correspondence:
| |
Collapse
|
7
|
Simon Á, Tozar T, Smarandache A, Boni M, Stoicu A, Dowson A, van Loon JJWA, Pascu ML. Stability Studies of UV Laser Irradiated Promethazine and Thioridazine after Exposure to Hypergravity Conditions. Molecules 2022; 27:1728. [PMID: 35268828 PMCID: PMC8911845 DOI: 10.3390/molecules27051728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmaceuticals carried into space are subjected to different gravitational conditions. Hypergravity is encountered in the first stage, during spacecraft launching. The stability of medicines represents a critical element of space missions, especially long-duration ones. Therefore, stability studies should be envisaged before the implementation of drugs for future deep space travel, where the available pharmaceuticals would be limited and restocking from Earth would be impossible. Multipurpose drugs should be proposed for this reason, such as phenothiazine derivatives that can be transformed by optical methods into antimicrobial agents. Within this preliminary study, promethazine and thioridazine aqueous solutions were exposed to UV laser radiation that modified their structures and generated a mixture of photoproducts efficient against particular bacteria. Subsequently, they were subjected to 20 g in the European Space Agency's Large Diameter Centrifuge. The aim was to evaluate the impact of hypergravity on the physico-chemical and spectral properties of unirradiated and laser-irradiated medicine solutions through pH assay, UV-Vis/FTIR absorption spectroscopy, and thin-layer chromatography. The results revealed no substantial alterations in centrifuged samples when compared to uncentrifuged ones. Due to their stability after high-g episodes, laser-exposed phenothiazines could be considered for future space missions.
Collapse
Affiliation(s)
- Ágota Simon
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Ilfov, Romania
| | - Tatiana Tozar
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
| | - Adriana Smarandache
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
| | - Mihai Boni
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
| | - Alexandru Stoicu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
| | - Alan Dowson
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands; (A.D.); (J.J.W.A.v.L.)
| | - Jack J. W. A. van Loon
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands; (A.D.); (J.J.W.A.v.L.)
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Mihail Lucian Pascu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Ilfov, Romania
| |
Collapse
|