1
|
Tylińska B, Janicka-Kłos A, Gębarowski T, Nowotarska P, Plińska S, Wiatrak B. Pyrimidine Derivatives as Selective COX-2 Inhibitors with Anti-Inflammatory and Antioxidant Properties. Int J Mol Sci 2024; 25:11011. [PMID: 39456793 PMCID: PMC11507521 DOI: 10.3390/ijms252011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pyrimidine derivatives exhibit a wide range of biological activities, including anti-inflammatory properties. The aim of this study was to investigate the effects of tested pyrimidine derivatives on the activity of cyclooxygenase isoenzymes (COX-1 and COX-2), antioxidant properties, and their ability to inhibit the growth of inflammatory cells. In vitro tests were conducted to assess the ability of pyrimidine derivatives L1-L4 to inhibit COX-1 and COX-2 activity using the TMPD oxidation assay (N,N,N',N'-tetramethyl-p-phenylenediamine). The compounds' ability to inhibit the growth of lipopolysaccharide (LPS)-stimulated THP-1 (human leukemia monocytic) monocyte cells and their impact on reactive oxygen species (ROS) levels in an inflammatory model were also evaluated. The binding properties of human serum albumin (HSA) were assessed using UV-Vis spectroscopy, circular dichroism (CD), and isothermal titration calorimetry (ITC). Among the tested pyrimidine derivatives, L1 and L2 showed high selectivity towards COX-2, outperforming piroxicam and achieving results comparable to meloxicam. In the sulforhodamine B (SRB) assay, L1 and L2 demonstrated dose-dependent inhibition of LPS-stimulated THP-1 cell growth. Additionally, ROS assays indicated that these compounds reduced free radical levels, confirming their antioxidant properties. Binding studies with albumin revealed that L1 and L2 formed stable complexes with HSA. These results suggest that these compounds could serve as a basis for further research into anti-inflammatory and anticancer drugs with reduced toxicity.
Collapse
Affiliation(s)
- Beata Tylińska
- Department of Organic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Janicka-Kłos
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland; (T.G.); (P.N.)
| | - Paulina Nowotarska
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland; (T.G.); (P.N.)
| | - Stanisława Plińska
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland;
| |
Collapse
|
2
|
Bryndal I, Stolarczyk M, Mikołajczyk A, Krupińska M, Pyra A, Mączyński M, Matera-Witkiewicz A. Pyrimidine Schiff Bases: Synthesis, Structural Characterization and Recent Studies on Biological Activities. Int J Mol Sci 2024; 25:2076. [PMID: 38396753 PMCID: PMC10889512 DOI: 10.3390/ijms25042076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, 5-[(4-ethoxyphenyl)imino]methyl-N-(4-fluorophenyl)-6-methyl-2-phenylpyrimidin-4-amine has been synthesized, characterized, and evaluated for its antibacterial activity against Enterococcus faecalis in combination with antineoplastic activity against gastric adenocarcinoma. In this study, new 5-iminomethylpyrimidine compounds were synthesized which differ in the substituent(s) of the aromatic ring attached to the imine group. The structures of newly obtained pyrimidine Schiff bases were established by spectroscopy techniques (ESI-MS, FTIR and 1H NMR). To extend the current knowledge about the features responsible for the biological activity of the new 5-iminomethylpyrimidine derivatives, low-temperature single-crystal X-ray analyses were carried out. For all studied crystals, intramolecular N-H∙∙∙N hydrogen bonds and intermolecular C-H∙∙∙F interactions were observed and seemed to play an essential role in the formation of the structures. Simultaneously, their biological properties based on their cytotoxic features were compared with the activities of the Schiff base (III) published previously. Moreover, computational investigations, such as ADME prediction analysis and molecular docking, were also performed on the most active new Schiff base (compound 4b). These results were compared with the highest active compound III.
Collapse
Affiliation(s)
- Iwona Bryndal
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (M.S.); (M.M.)
| | - Marcin Stolarczyk
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (M.S.); (M.M.)
| | - Aleksandra Mikołajczyk
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (A.M.); (M.K.); (A.M.-W.)
| | - Magdalena Krupińska
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (A.M.); (M.K.); (A.M.-W.)
| | - Anna Pyra
- Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie, 50-383 Wrocław, Poland;
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (M.S.); (M.M.)
| | - Agnieszka Matera-Witkiewicz
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (A.M.); (M.K.); (A.M.-W.)
| |
Collapse
|
3
|
Althobaiti I, Alserhani MSM, Arafa WAA, Ghoneim AA, Hussein MF, Ibrahim HM, Mourad AK. Efficient Protocol for Novel Hybrid Pyrimidines Synthesis: Antiproliferative Activity, DFT Analyses, and Molecular Docking Studies. ACS OMEGA 2023; 8:47239-47253. [PMID: 38107937 PMCID: PMC10720285 DOI: 10.1021/acsomega.3c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
An efficient, microwave/ultrasound-irradiated synthesis of novel chromenopyrimidines has been established. 2-Amino-5-oxo-4-(thiophen-2-yl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (1) underwent cyclization reactions with various assorted reagents under sustainable conditions to afford a family of fused pyrimidine derivatives. The proposed structures of the designed fused pyrimidines were confirmed by several spectral techniques. Moreover, the targeted pyrimidines were estimated for their in vitro cytotoxic activities toward three carcinoma cell lines: breast (MCF7), hepatocyte (HepG2), and lung (A549) cancer cell lines, as well as one noncancerous cell line (MCF-10A). Structure-activity relationship (SAR) analyses revealed that derivatives 3 and 7 exhibited the highest potency in inhibiting the growth of cancer cells tested in vitro. Particularly, 3-amino-4-imino-5-(thiophen-2-yl)-3,4,5,7,8,9-hexahydro-6H-chromeno[2,3-d]pyrimidin-6-one (3) displayed a robust impact with IC50 values ranging from 2.02 to 1.61 μM. Interestingly, compound 3 was observed to have low cytotoxicity toward noncancerous cell (MCF-10A) compared to the standard drug (Doxorubicin). Further, quantum chemical computations of the designed molecules utilizing density functional theory (DFT) were conducted and shown to be compatible with the observed antiproliferative properties. Thorough docking investigations revealed that the assembled compounds possess exceptionally low binding energies toward our three selected proteins: 4b3z-Lung, HepG2-2JW2, and 6ENV-MCV-7. Based on these intriguing results, compound 3 could be further evaluated for preclinical screening, potentially paving the way for its utilization as a promising cancer treatment.
Collapse
Affiliation(s)
- Ibrahim
O. Althobaiti
- Chemistry
Department, College of Science and Arts, Jouf University, Gurayat 77217, Saudi Arabia
| | | | - Wael A. A. Arafa
- Chemistry
Department, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514 Fayoum, Egypt
| | - Amira A. Ghoneim
- Chemistry
Department, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
- Chemistry
Department, Faculty of Science, Zagazig
University, Zagazig 7120001, Egypt
| | - Modather F. Hussein
- Chemistry
Department, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
- Chemistry
Department, Faculty of Science, Al-Azhar
University, Asyut 71524, Egypt
| | - Hamada Mohamed Ibrahim
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514 Fayoum, Egypt
| | - Asmaa K. Mourad
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514 Fayoum, Egypt
| |
Collapse
|
4
|
Sykuła A, Nowak A, Garribba E, Dzeikala A, Rowińska-Żyrek M, Czerwińska J, Maniukiewicz W, Łodyga-Chruścińska E. Spectroscopic Characterization and Biological Activity of Hesperetin Schiff Bases and Their Cu(II) Complexes. Int J Mol Sci 2023; 24:ijms24010761. [PMID: 36614204 PMCID: PMC9821237 DOI: 10.3390/ijms24010761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The three Schiff base ligands, derivatives of hesperetin, HHSB (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]isonicotinohydrazide), HIN (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]benzhydrazide) and HTSC (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]thiosemicarbazide) and their copper complexes, CuHHSB, CuHIN, and CuHTSC were designed, synthesized and analyzed in terms of their spectral characterization and the genotoxic activity. Their structures were established using several methods: elemental analysis, FT-IR, UV-Vis, EPR, and ESI-MS. Spectral data showed that in the acetate complexes the tested Schiff bases act as neutral tridentate ligand coordinating to the copper ion through two oxygen (or oxygen and sulphur) donor atoms and a nitrogen donor atom. EPR measurements indicate that in solution the complexes keep their structures with the ligands remaining bound to copper(II) in a tridentate fashion with (O-, N, Oket) or (O-, N, S) donor set. The genotoxic activity of the compounds was tested against model tumour (HeLa and Caco-2) and normal (LLC-PK1) cell lines. In HeLa cells the genotoxicity for all tested compounds was noticed, for HHSB and CuHHSB was the highest, for HTSC and CuHTSC-the lowest. Generally, Cu complexes displayed lower genotoxicity to HeLa cells than ligands. In the case of Caco-2 cell line HHSB and HTSC induced the strongest breaks to DNA. On the other side, CuHHSB and CuHTSC induced the highest DNA damage against LLC-PK1.
Collapse
Affiliation(s)
- Anna Sykuła
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland
| | - Eugenio Garribba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Aliaksandr Dzeikala
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | | | - Justyna Czerwińska
- Department of Occupational Safety Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 90-924 Lodz, Poland
| | - Waldemar Maniukiewicz
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Elżbieta Łodyga-Chruścińska
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
- Correspondence:
| |
Collapse
|
5
|
Choura E, Elghali F, Bernard PJ, Msalbi D, Marco-Contelles J, Aifa S, Ismaili L, Chabchoub F. Benzochromenopyrimidines: Synthesis, Antiproliferative Activity against Colorectal Cancer and Physicochemical Properties. Molecules 2022; 27:molecules27227878. [PMID: 36431976 PMCID: PMC9694646 DOI: 10.3390/molecules27227878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Ten new differently substituted 3-benzyl-5-aryl-3,5-dihydro-4H-benzo[6,7]chromeno[2,3-d]pyrimidin-4,6,11-triones 3 were synthesized by a simple and cost-efficient procedure in a one-pot, three-component reaction from readily available ethyl 2-amino-4-aryl-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromene-3-carboxylates, benzylamine and triethyl orthoformate under solvent- and catalyst-free conditions. All the new compounds were screened for their antiproliferative activity against two colorectal-cancer-cell lines. The results showed that the compounds 3-benzyl-5-phenyl-3,5-dihydro-4H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11-trione (3a) and 3-benzyl-5-(3-hydroxyphenyl)-3,5-dihydro-4H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11-trione (3g) exhibited the most potent balanced inhibitory activity against human LoVo and HCT-116 cancer cells.
Collapse
Affiliation(s)
- Emna Choura
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, BP 802, Sfax 3000, Tunisia
| | - Fares Elghali
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour, Road Km 6, BP 1177, Sfax 3018, Tunisia
| | - Paul J. Bernard
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université Franche-Comté, UFR Santé, 19, Rue Ambroise Paré, F-25000 Besançon, France
| | - Dhouha Msalbi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour, Road Km 6, BP 1177, Sfax 3018, Tunisia
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, 28006 Madrid, Spain
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour, Road Km 6, BP 1177, Sfax 3018, Tunisia
| | - Lhassane Ismaili
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université Franche-Comté, UFR Santé, 19, Rue Ambroise Paré, F-25000 Besançon, France
- Correspondence: (L.I.); (F.C.)
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, BP 802, Sfax 3000, Tunisia
- Correspondence: (L.I.); (F.C.)
| |
Collapse
|
6
|
Yang L, Sun Y, He L, Fan Y, Wang T, Luo J. Synthesis and herbicidal activity of novel 1,2,4-triazole derivatives containing fluorine, phenyl sulfonyl and pyrimidine moieties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Stolarczyk M, Matera-Witkiewicz A, Wolska A, Krupińska M, Mikołajczyk A, Pyra A, Bryndal I. Synthesis, Crystal Structure, and Biological Evaluation of Novel 5-Hydroxymethylpyrimidines. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6916. [PMID: 34832318 PMCID: PMC8618934 DOI: 10.3390/ma14226916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022]
Abstract
Pyrimidine displays a wide array of bioactivities, and thence, it is still considered a potent unit of new drug research. Its derivative, 5-hydroxymethylpyrimidine, can be found as a scaffold of nontypical nitrogen bases in DNA and as a core of some natural bioactive compounds. In this study, we obtained a series of 5-hydroxymethylpyrimidines that vary in the 4-position by the reduction of proper esters. All compounds were characterized by spectroscopic analysis, and single-crystal X-ray diffraction was performed for some of them. Biological investigations estimated cytotoxic properties against normal (RPTEC) and cancer (HeLa, HepaRG, Caco-2, AGS, A172) cell lines. It was found that the derivatives with an aliphatic amino group at the 4-position are generally less toxic to normal cells than those with a benzylsulfanyl group. Moreover, compounds with bulky constituents exhibit better anticancer properties, though at a moderate level. The specific compounds were chosen due to their most promising IC50 concentration for in silico study. Furthermore, antimicrobial activity tests were performed against six strains of bacteria and one fungus. They demonstrated that only derivatives with at least three carbon chain amino groups at the 4-position have weak antibacterial properties, and only the derivative with 4-benzylsulfanyl constituent exhibits any antifungal action.
Collapse
Affiliation(s)
- Marcin Stolarczyk
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (M.S.); (I.B.)
| | - Agnieszka Matera-Witkiewicz
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (A.W.); (M.K.); (A.M.)
| | - Aleksandra Wolska
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (A.W.); (M.K.); (A.M.)
| | - Magdalena Krupińska
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (A.W.); (M.K.); (A.M.)
| | - Aleksandra Mikołajczyk
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (A.W.); (M.K.); (A.M.)
| | - Anna Pyra
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie Street 14, 50-383 Wroclaw, Poland;
| | - Iwona Bryndal
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (M.S.); (I.B.)
| |
Collapse
|