1
|
Zhang Y, Wang R, Liu L, Wang E, Yang J, Yuan H. Distinct lignocellulolytic enzymes produced by Trichoderma harzianum in response to different pretreated substrates. BIORESOURCE TECHNOLOGY 2023; 378:128990. [PMID: 37003454 DOI: 10.1016/j.biortech.2023.128990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
In order to optimize the composition of enzyme cocktail for improving the hydrolytic efficiency of lignocellulose, different substrates were tested as inducers for producing lignocellulolytic enzymes by Trichoderma harzianum EM0925 in this study. As results, ultrafine grinding or steam explosion pretreated substrates can induce T. harzianum EM0925 to secret holo lignocellulolytic enzymes; acid treated substrate can induce cellobiohydrolase; while alkali or sodium chlorite treated substrates can induce β-xylosidase specifically. Furthermore, the combination of enzyme cocktails with different hydrolysis characteristics can further improve the hydrolysis efficiency, since 100% yields of glucose and xylose were obtained simultaneously from ultrafine grinding treated corn stover at low enzyme dosage (1.2 mg proteins/g substrate). This study for the first time demonstrated an effective solution that specific-pretreated substrates can be used as inducers for specific enzyme production by T. harzianum, which provided new idea and potential strategy for the construction of highly-efficient lignocellulolytic enzyme cocktails.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China; Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Ruonan Wang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Zeghlouli J, Schiavone N, Askanian H, Guendouz A, El Modafar C, Michaud P, Delattre C. Thermal, Morphological and Mechanical Properties of a BioPE Matrix Composite: Case of Shell, Pulp, and Argan Cake as Biofillers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2241. [PMID: 36984120 PMCID: PMC10055938 DOI: 10.3390/ma16062241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Extrusion and hot compressing molding processes were used to create bio-polyethylene (BioPE) composites reinforced with argan byproducts (shell, pulp, and argan cake) as bio-fillers. The thermal stability of the composites wass analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Dynamical mechanical analysis and rheological testing were used to investigate their mechanical properties. The morphological results showed a good adhesion between the argan and BioPE matrix. More efficient mechanical properties have been distinguished in the case of argan byproduct-based composite. A higher Young's modulus was noted for all the biocomposites compared to pure BioPE. Thermal analysis revealed that the addition of bio-filler to polymer reduced decomposition temperatures. This study provides an ecological alternative for upgrading the valorization of abundant and underutilized Moroccan biomass. Furthermore, the possibility of using argan byproducts in composite manufacturing will help open up new markets for what is currently considered waste.
Collapse
Affiliation(s)
- Jihane Zeghlouli
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nicola Schiavone
- Institut de Chimie de Clermont Ferrand (ICCF), UMR 6296 Université Clermont Auvergne, CNRS, SIGMA Clermont, F-63000 Clermont-Ferrand, France
| | - Haroutioun Askanian
- Institut de Chimie de Clermont Ferrand (ICCF), UMR 6296 Université Clermont Auvergne, CNRS, SIGMA Clermont, F-63000 Clermont-Ferrand, France
| | - Amine Guendouz
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Cherkaoui El Modafar
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Philippe Michaud
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
3
|
Cellulosic Fiber Waste Feedstock for Bioethanol Production via Bioreactor-Dependent Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The bioconversion of environmental wastes into energy is gaining much interest in most developing and developed countries. The current study is concerned with the proper exploitation of some industrial wastes. Cellulosic fiber waste was selected as a raw material for producing bioethanol as an alternative energy source. A combination of physical, chemical, and enzymatic hydrolysis treatments was applied to maximize the concentration of glucose that could be fermented with yeast into bioethanol. The results showed that the maximum production of 13.9 mg/mL of glucose was achieved when 5% cellulosic fiber waste was treated with 40% HCl, autoclaved, and followed with enzymatic hydrolysis. Using SEM and FTIR analysis, the instrumental characterization of the waste fiber treatment confirmed the effectiveness of the degradation by turning the long threads of the fibers into small pieces, in addition to the appearance of new functional groups and peak shifting. A potent yeast strain isolated from rotten grapes was identified as Starmerella bacillaris STDF-G4 (accession number OP872748), which was used to ferment the obtained glucose units into bioethanol under optimized conditions. The maximum production of 3.16 mg/mL of bioethanol was recorded when 7% of the yeast strain was anaerobically incubated at 30 °C in a broth culture with the pH adjusted to 5. The optimized conditions were scaled up from flasks to a fermentation bioreactor to maximize the bioethanol concentration. The obtained data showed the ability of the yeast strain to produce 4.13 mg/mL of bioethanol after the first 6 h of incubation and double the amount after 36 h of incubation to reach 8.6 mg/mL, indicating the efficiency of the bioreactor in reducing the time and significantly increasing the product.
Collapse
|
4
|
Kabous KE, Atfaoui K, Oubihi A, Hamoutou S, Ouhssine M. The Study of the Heterogeneity of the Qualities of Argan Oils and Pomaces from Different Cooperatives in the Essaouira Region (Morocco). J Oleo Sci 2023; 72:283-293. [PMID: 36878582 DOI: 10.5650/jos.ess22222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
In this study, a comparison of the intra-regional variation in the quality of Argan oil and pomace collected from 12 cooperatives in the Essaouira region (Morocco) during the COVID-19 period was carried out. All studied Argan pomaces together with the extraction solvents showed a significant difference (p ≤ 0.05) in the total phenolic compounds, flavonoids, and tannins contents. The proteins, residual oils, total sugars, and total reducing sugars contents in the collected pomaces vary considerably among cooperatives of origin, with maximum averages of 50.45%; 30.05%; 3.82 milligrams of glucose equivalent per gram of dry matter; and 0.53 milligrams of glucose equivalent per gram of dry matter, respectively. Therefore, it is a very valuable ingredient for livestock feed and some cosmetic products that may contain it. The remaining Argan oil content in the pomace varied significantly among cooperatives, ranging from 8.74 to 30.05%. Pomace from traditional extraction recorded the highest content (30.05%), showing that the artisanal and modern extraction processes are not standardized. The measurements of acidity, peroxide value, specific extinction coefficient at 232 nm and 270 nm, and conjugated dienes were carried out in accordance with Moroccan Standard 08.5.090 in order to qualitatively classify all investigated Argan oils. Accordingly, the analyzed oils were categorized as "extra virgin Argan oil," "fine virgin Argan oil," "ordinary virgin Argan oil," and "lampante virgin Argan oil." Therefore, several factors can explain these variations in quality grades, both endogenous and exogenous. Overall, the variation observed in the obtained result allows us to deduce the most significant variables impacting the quality of Argan products and by-products.
Collapse
Affiliation(s)
- Karima El Kabous
- Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Sciences, Ibn Tofaïl University
| | - Khadija Atfaoui
- Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Sciences, Ibn Tofaïl University
| | - Asmaa Oubihi
- Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Sciences, Ibn Tofaïl University
| | - Souad Hamoutou
- Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Sciences, Ibn Tofaïl University
| | - Mohammed Ouhssine
- Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Sciences, Ibn Tofaïl University
| |
Collapse
|
5
|
High-Pressure Water Jet System Treatment of Argan Nut Shell and Enzymatic Hydrolysis for Bioethanol Production. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Argan nut shell represents the most generated by-product during the process of the extraction of argan oil. For the first time, argan nut shell was characterized and assessed as a new potential feedstock for bioethanol production using a combination of mechanical and enzymatic pretreatment. Argan shell samples were first disintegrated using the Star Burst system, which involves a high-pressure water jet system. Then, the pretreated argan nut shell was subjected to enzymatic hydrolysis using Viscozyme L (30 FBGU/g). Afterwards, the fermentation of the hydrolysate by Saccharomyces cerevisiae was investigated. Argan nut shell, as a feedstock plentiful in carbohydrates, conferred a high yield of saccharification (90%) and an optimal ethanol bioconversion (45.25%) using Viscozyme L (30 FBGU/g) at 2%w/v of argan feedstock.
Collapse
|
6
|
Ben Atitallah I, Antonopoulou G, Ntaikou I, Soto Beobide A, Dracopoulos V, Mechichi T, Lyberatos G. A Comparative Study of Various Pretreatment Approaches for Bio-Ethanol Production from Willow Sawdust, Using Co-Cultures and Mono-Cultures of Different Yeast Strains. Molecules 2022; 27:molecules27041344. [PMID: 35209130 PMCID: PMC8875012 DOI: 10.3390/molecules27041344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of different pretreatment approaches based on alkali (NaOH)/hydrogen peroxide (H2O2) on willow sawdust (WS) biomass, in terms of delignification efficiency, structural changes of lignocellulose and subsequent fermentation toward ethanol, was investigated. Bioethanol production was carried out using the conventional yeast Saccharomyces cerevisiae, as well as three non-conventional yeasts strains, i.e., Pichia stipitis, Pachysolen tannophilus, Wickerhamomyces anomalus X19, separately and in co-cultures. The experimental results showed that a two-stage pretreatment approach (NaOH (0.5% w/v) for 24 h and H2O2 (0.5% v/v) for 24 h) led to higher delignification (38.3 ± 0.1%) and saccharification efficiency (31.7 ± 0.3%) and higher ethanol concentration and yield. Monocultures of S. cerevisiae or W. anomalus X19 and co-cultures with P. stipitis exhibited ethanol yields in the range of 11.67 ± 0.21 to 13.81 ± 0.20 g/100 g total solids (TS). When WS was subjected to H2O2 (0.5% v/v) alone for 24 h, the lowest ethanol yields were observed for all yeast strains, due to the minor impact of this treatment on the main chemical and structural WS characteristics. In order to decide which is the best pretreatment approach, a detailed techno-economical assessment is needed, which will take into account the ethanol yields and the minimum processing cost.
Collapse
Affiliation(s)
- Imen Ben Atitallah
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- Correspondence: ; Tel.: +30-261-096-5318
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Amaia Soto Beobide
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Vassilios Dracopoulos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|