1
|
Rammala BJ, Ramchuran S, Chunilall V, Zhou N. Enterobacter spp. isolates from an underground coal mine reveal ligninolytic activity. BMC Microbiol 2024; 24:382. [PMID: 39354380 PMCID: PMC11443738 DOI: 10.1186/s12866-024-03537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Lignin, the second most abundant renewable carbon source on earth, holds significant potential for producing biobased specialty chemicals. However, its complex, highly branched structure, consisting of phenylpropanoic units and strong carbon-carbon and ether bonds, makes it highly resistant to depolymerisation. This recalcitrancy highlights the need to search for robust lignin-degrading microorganisms with potential for use as industrial strains. Bioprospecting for microorganisms from lignin-rich niches is an attractive approach among others. Here, we explored the ligninolytic potential of bacteria isolated from a lignin-rich underground coalmine, the Morupule Coal Mine, in Botswana. Using a culture-dependent approach, we screened for the presence of bacteria that could grow on 2.5% kraft lignin-supplemented media and identified them using 16 S rRNA sequencing. The potential ligninolytic isolates were evaluated for their ability to tolerate industry-associated stressors. We report the isolation of twelve isolates with ligninolytic abilities. Of these, 25% (3) isolates exhibited varying robust ligninolytic ability and tolerance to various industrial stressors. The molecular identification revealed that the isolates belonged to the Enterobacter genus. Two of three isolates had a 16 S rRNA sequence lower than the identity threshold indicating potentially novel species pending further taxonomic review. ATR-FTIR analysis revealed the ligninolytic properties of the isolates by demonstrating structural alterations in lignin, indicating potential KL degradation, while Py-GC/MS identified the resulting biochemicals. These isolates produced chemicals of diverse functional groups and monomers as revealed by both methods. The use of coalmine-associated ligninolytic bacteria in biorefineries has potential.
Collapse
Affiliation(s)
- Bame J Rammala
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana, South Africa.
| | - Santosh Ramchuran
- Council for Science and Industrial Research, Chemicals Cluster, Pretoria, South Africa
| | - Viren Chunilall
- Council for Science and Industrial Research, Biorefinery Industry Development Facility, Durban, South Africa
- School of Life Sciences, School of Engineering, University of KwaZulu Natal, Durban, South Africa
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana, South Africa.
| |
Collapse
|
2
|
Edith Ayala-Rodríguez A, Valdés-Rodríguez S, Enrique Olalde-Mathieu V, Arias-Padró M, Reyes-Moreno C, Olalde-Portugal V. Extracellular ligninases production and lignin degradation by Paenibacillus polymyxa. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38104982 DOI: 10.2323/jgam.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bacteria represent an attractive source for the isolation and identification of potentially useful microorganisms for lignin depolymerization, a process required for the use of agricultural waste. In this work, ten autochthonous bacteria isolated from straw, cow manure, and composts were characterized for potential use in the biodelignification of the waste. A comparison of the ability to degrade lignin and the efficiency of ligninolytic enzymes was performed in bacteria grown in media with lignin as a sole carbon source (LLM, 3.5g/L lignin-alkali) and in complex media supplemented with All-Ban fiber (FLM, 1.5g/L). Bacterial isolates showed different abilities to degrade lignin, they decreased the lignin concentration from 7.6 to 18.6% in LLM and from 11.1 to 44.8% in FLM. They also presented the activity of manganese peroxidase, lignin peroxidases, and laccases with different specific activities. However, strain 26 identified as Paenibacillus polymyxa by sequencing the 16S rRNA showed the highest activity of lignin peroxidase and the ability to degrade efficiently lignocellulose. In addition, P. polymyxa showed the highest potential (desirability ≥ 0.795) related to the best combination of properties to depolymerize lignin from biomass. The results suggest that P. polymyxa has a coordinated lignin degradation system constituted of lignin peroxidase, manganese peroxidase, and laccase enzymes.
Collapse
Affiliation(s)
- Ana Edith Ayala-Rodríguez
- Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa
| | - Silvia Valdés-Rodríguez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Irapuato
| | | | - María Arias-Padró
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Irapuato
| | - Cuauhtémoc Reyes-Moreno
- Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa
| | - Víctor Olalde-Portugal
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Irapuato
| |
Collapse
|
3
|
Ali NS, Huang F, Qin W, Yang TC. A high throughput screening process and quick isolation of novel lignin-degrading microbes from large number of natural biomasses. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00809. [PMID: 37583477 PMCID: PMC10423689 DOI: 10.1016/j.btre.2023.e00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
High throughput screening approaches can significantly speed up the identification of novel enzymes from natural microbial consortiums. A two-step high throughput screening process was proposed and explored to screen lignin-degrading microorganisms. By employing this modified culture enrichment method and screening based on enzyme activity, a total of 82 bacterial and 46 fungal strains were isolated from fifty decayed wood samples (100 liquid cultures) collected from the banks of the Ottawa River in Canada. Among them, ten bacterial and five fungal strains were selected and identified based on their high laccase activities by 16S rDNA and ITS gene sequencing, respectively. The study identified bacterial strains from various genera including Serratia, Enterobacter, Raoultella, and Bacillus, along with fungal counterparts including Mucor, Trametes, Conifera and Aspergillus. Moreover, Aspergillus sydowii (AORF21), Mucor sp. (AORF43), Trametes versicolor (AORF3) and Enterobacter sp. (AORB55) exhibited xylanase and β- glucanase activities in addition to laccase production. The proposed approach allowed for the quick identification of promising consortia and enhanced the chance of isolating desired strains based on desired enzyme activities. This method is not limited to lignocellulose and lignin-degrading microorganisms but can be applied to identify novel microbial strains and enzymes from different natural samples.
Collapse
Affiliation(s)
- Nadia Sufdar Ali
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| | - Fang Huang
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Trent Chunzhong Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
4
|
Ley Y, Cheng XY, Ying ZY, Zhou NY, Xu Y. Characterization of Two Marine Lignin-Degrading Consortia and the Potential Microbial Lignin Degradation Network in Nearshore Regions. Microbiol Spectr 2023; 11:e0442422. [PMID: 37042774 PMCID: PMC10269927 DOI: 10.1128/spectrum.04424-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Terrestrial organic carbon such as lignin is an important component of the global marine carbon. However, the structural complexity and recalcitrant nature of lignin are deemed challenging for biodegradation. It has been speculated that bacteria play important roles in lignin degradation in the marine system. However, the extent of the involvement of marine microorganisms in lignin degradation and their contribution to the oceanic carbon cycle remains elusive. In this study, two bacterial consortia capable of degrading alkali lignin (a model compound of lignin), designated LIG-B and LIG-S, were enriched from the nearshore sediments of the East and South China Seas. Consortia LIG-B and LIG-S mainly comprised of the Proteobacteria phylum with Nitratireductor sp. (71.6%) and Halomonas sp. (91.6%), respectively. Lignin degradation was found more favorable in consortium LIG-B (max 57%) than in LIG-S (max 18%). Ligninolytic enzymes laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) capable of decomposing lignin into smaller fragments were all active in both consortia. The newly emerged low-molecular-weight aromatics, organic acids, and other lignin-derived compounds in biotreated alkali lignin also evidently showed the depolymerization of lignin by both consortia. The lignin degradation pathways reconstructed from consortium LIG-S were found to be more comprehensive compared to consortium LIG-B. It was further revealed that catabolic genes, involved in the degradation of lignin and its derivatives through multiple pathways via protocatechuate and catechol, are present not only in lignin-degrading consortia LIG-B and LIG-S but also in 783 publicly available metagenomic-assembled genomes from nine nearshore regions. IMPORTANCE Numerous terrigenous lignin-containing plant materials are constantly discharged from rivers and estuaries into the marine system. However, only low levels of terrigenous organic carbon, especially lignin, are detected in the global marine system due to the abundance of active heterotrophic microorganisms driving the carbon cycle. Simultaneously, the lack of knowledge on lignin biodegradation has hindered our understanding of the oceanic carbon cycle. Moreover, bacteria have been speculated to play important roles in the marine lignin biodegradation. Here, we enriched two bacterial consortia from nearshore sediments capable of utilizing alkali lignin for cell growth while degrading it into smaller molecules and reconstructed the lignin degradation network. In particular, this study highlights that marine microorganisms in nearshore regions mostly undergo similar pathways using protocatechuate and catechol as ring-cleavage substrates to drive lignin degradation as part of the oceanic carbon cycle, regardless of whether they are in sediments or water column.
Collapse
Affiliation(s)
- Yvette Ley
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yu Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Yue Ying
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Yadav S, Tripathi S, Purchase D, Chandra R. Development of a biofilm-forming bacterial consortium and quorum sensing molecules for the degradation of lignin-containing organic pollutants. ENVIRONMENTAL RESEARCH 2023; 226:115618. [PMID: 36921788 DOI: 10.1016/j.envres.2023.115618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The presence of lignin along with other pollutants makes effluent more complex when it is discharged from Pulp and paper mills. The present study investigates the use of biofilm-forming bacteria isolated from pulp paper mill effluent contaminated sites (PPMECSs) for lignin degradation. Isolated biofilm-forming and lignin-degrading bacteria were identified as Bacillus subtilis, Enterobacter cancerogenus, and Bacillus licheniformis by 16S rRNA gene sequencing. Thin liquid chromatography (TLC) analysis showed that the consortium of bacteria produced acyl-homoserine lactone (AHL) as quorum sensing molecules and extracellular polymeric substances (EPS) that protect the bacterial consortium under unfavorable conditions. The potential consortium was able to reduce lignin (900 ppm) by 73% after 8 days of incubation in a minimal salt medium containing kraft lignin and glucose at pH 7.0 and 37 °C as compared to individual strains. The degradation by-products were identified as amides, alcohols, and acids. The major organic pollutants in the effluent were reduced after treatment of the constructed consortium, thus confirming active biotransformation and biodegradation of the lignin. Microscopic examination also indicated the presence of lignin induced biofilm formation. Hence, the constructed biofilm-forming bacterial consortia based on quorum sensing offered a sustainable and effective solution to treat lignin-containing complex pollutants.
Collapse
Affiliation(s)
- Sangeeta Yadav
- Department of Microbiology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, 226017, Uttar Pradesh, India; Department of Botany, Vaishno Devi Prashikshan Mahavidyalaya, Godahi, Kunda, Pratapgarh, Uttar Pradesh, India.
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, England, NW4 4BT, UK
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
6
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
7
|
Jain D, Navariya JK, Bhojiya AA, Singh A, Mohanty SR, Upadhyay SK. Bioprospecting of novel ligninolytic bacteria for effective bioremediation of agricultural by-product and synthetic pollutant dyes. Microbiol Res 2023; 270:127330. [PMID: 36848699 DOI: 10.1016/j.micres.2023.127330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Lignin is a significant renewable carbon source that needs to be exploited to manufacture bio-ethanol and chemical feedstocks. Lignin mimicking methylene blue (MB) dye is widely used in industries and causes water pollution. Using kraft lignin, methylene blue, and guaiacol as a full carbon source, 27 lignin-degrading bacteria (LDB) were isolated from 12 distinct traditional organic manures for the current investigation. The ligninolytic potential of 27 lignin-degrading bacteria was assessed by qualitative and quantitative assay. In a qualitative plate assay, the LDB-25 strain produced the largest zone, measuring 6.32 ± 0.297, on MSM-L-kraft lignin plates, while the LDB-23 strain produced the largest zone, measuring 3.44 ± 0.413, on MSM-L-Guaiacol plates. The LDB-9 strain in MSM-L-kraft lignin broth was able to decolorize lignin to a maximum of 38.327 ± 0.011% in a quantitative lignin degradation assay, which was later verified by FTIR assay. In contrast, LDB-20 produced the highest decolorization (49.633 ± 0.017%) in the MSM-L-Methylene blue broth. The highest manganese peroxidase enzyme activity, measuring 6322.314 ± 0.034 U L-1, was found in the LDB-25 strain, while the highest laccase enzyme activity, measuring 1.5105 ± 0.017 U L-1, was found in the LDB-23 strain. A preliminary examination into the biodegradation of rice straw using effective LDB was carried out, and efficient lignin-degrading bacteria were identified using 16SrDNA sequencing. SEM investigations also supported lignin degradation. LDB-8 strain had the highest percentage of lignin degradation (52.86%), followed by LDB-25, LDB-20, and LDB-9. These lignin-degrading bacteria have the ability to significantly reduce lignin and lignin-analog environmental contaminants, therefore they can be further researched for effective bio-waste management mediated breakdown.
Collapse
Affiliation(s)
- Devendra Jain
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur 313001, India.
| | - Jitendra Kumar Navariya
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur 313001, India
| | - Ali Asger Bhojiya
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur 313001, India; Faculty of Science, US Ostwal Science, Arts and Commerce College, Mangalwad, Chittorgarh, Rajasthan 302024, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, India
| | - Santosh Ranjan Mohanty
- All India Network Project on Soil Biodiversity-Biofertilizers, ICAR-Indian Institute of Soil Science, Bhopal 462038, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India.
| |
Collapse
|
8
|
Zhang W, Diao C, Wang L. Degradation of lignin in different lignocellulosic biomass by steam explosion combined with microbial consortium treatment. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:55. [PMID: 36997991 PMCID: PMC10064694 DOI: 10.1186/s13068-023-02306-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
The difficulty of degrading lignin is the main factor limiting the high-value conversion process of lignocellulosic biomass. The biodegradation of lignin has attracted much attention because of its strong environmental friendliness, but it still faces some dilemmas such as slow degradation rate and poor adaptability. The microbial consortia with high lignin degradation efficiency and strong environmental adaptability were obtained in our previous research. To further increase the lignin degradation efficiency, this paper proposes a composite treatment technology of steam explosion combined with microbial consortium degradation to treat three kinds of biomass. We measured the lignin degradation efficiency, selectivity value (SV) and enzymatic saccharification efficiency. The structural changes of the biomass materials and microbial consortium structure were also investigated. The experimental results showed that after 1.6 MPa steam explosion treatment, the lignin degradation efficiency of the eucalyptus root reached 35.35% on the 7th days by microbial consortium. At the same time, the lignin degradation efficiency of the bagasse and corn straw treated by steam explosion followed by microbial biotreatment was 37.61-44.24%, respectively, after only 7 days of biotreatment. The microbial consortium also showed strong selectivity degradation to lignin. The composite treatment technology can significantly improve the enzymatic saccharification efficiency. Saccharomycetales, Ralstonia and Pseudomonadaceae were the dominant microorganisms in the biomass degradation systems. It was proved that the combined treatment technology of steam explosion and microbial consortium degradation could overcome the drawbacks of traditional microbial pretreatment technology, and can facilitate the subsequent high-value conversion of lignocellulose.
Collapse
Affiliation(s)
- Wen Zhang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| | - Chenyang Diao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Lei Wang
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
9
|
Rodriguez A, Hirakawa MP, Geiselman GM, Tran-Gyamfi MB, Light YK, George A, Sale KL. Prospects for utilizing microbial consortia for lignin conversion. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1086881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Naturally occurring microbial communities are able to decompose lignocellulosic biomass through the concerted production of a myriad of enzymes that degrade its polymeric components and assimilate the resulting breakdown compounds by members of the community. This process includes the conversion of lignin, the most recalcitrant component of lignocellulosic biomass and historically the most difficult to valorize in the context of a biorefinery. Although several fundamental questions on microbial conversion of lignin remain unanswered, it is known that some fungi and bacteria produce enzymes to break, internalize, and assimilate lignin-derived molecules. The interest in developing efficient biological lignin conversion approaches has led to a better understanding of the types of enzymes and organisms that can act on different types of lignin structures, the depolymerized compounds that can be released, and the products that can be generated through microbial biosynthetic pathways. It has become clear that the discovery and implementation of native or engineered microbial consortia could be a powerful tool to facilitate conversion and valorization of this underutilized polymer. Here we review recent approaches that employ isolated or synthetic microbial communities for lignin conversion to bioproducts, including the development of methods for tracking and predicting the behavior of these consortia, the most significant challenges that have been identified, and the possibilities that remain to be explored in this field.
Collapse
|
10
|
Mandal DD, Singh G, Majumdar S, Chanda P. Challenges in developing strategies for the valorization of lignin-a major pollutant of the paper mill industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11119-11140. [PMID: 36504305 PMCID: PMC9742045 DOI: 10.1007/s11356-022-24022-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
Apart from protecting the environment from undesired waste impacts, wastewater treatment is a crucial platform for recovery. The exploitation of suitable technology to transform the wastes from pulp and paper industries (PPI) to value-added products is vital from an environmental and socio-economic point of view that will impact everyday life. As the volume and complexity of wastewater increase in a rapidly urbanizing world, the challenge of maintaining efficient wastewater treatment in a cost-effective and environmentally friendly manner must be met. In addition to producing treated water, the wastewater treatment plant (WWTP) has a large amount of paper mill sludge (PMS) daily. Sludge management and disposal are significant problems associated with wastewater treatment plants. Applying the biorefinery concept is necessary for PPI from an environmental point of view and because of the piles of valuables contained therein in the form of waste. This will provide a renewable source for producing valuables and bio-energy and aid in making the overall process more economical and environmentally sustainable. Therefore, it is compulsory to continue inquiry on different applications of wastes, with proper justification of the environmental and economic factors. This review discusses current trends and challenges in wastewater management and the bio-valorization of paper mills. Lignin has been highlighted as a critical component for generating valuables, and its recovery prospects from solid and liquid PPI waste have been suggested.
Collapse
Affiliation(s)
- Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| | - Gaurav Singh
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| | - Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
- Department of Zoology, Sonamukhi College, Sonamukhi, Bankura, 722207 West Bengal India
| | - Protik Chanda
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| |
Collapse
|
11
|
Li X, Zhang ZY, Ren YL, Liang ZQ, Han YF. Diversity and Functional Analysis of Soil Culturable Microorganisms Using a Keratin Baiting Technique. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Mattoo AJ, Nonzom S. Endophytes in Lignin Valorization: A Novel Approach. Front Bioeng Biotechnol 2022; 10:895414. [PMID: 35928943 PMCID: PMC9343868 DOI: 10.3389/fbioe.2022.895414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lignin, one of the essential components of lignocellulosic biomass, comprises an abundant renewable aromatic resource on the planet earth. Although 15%––40% of lignocellulose pertains to lignin, its annual valorization rate is less than 2% which raises the concern to harness and/or develop effective technologies for its valorization. The basic hindrance lies in the structural heterogeneity, complexity, and stability of lignin that collectively makes it difficult to depolymerize and yield common products. Recently, microbial delignification, an eco-friendly and cheaper technique, has attracted the attention due to the diverse metabolisms of microbes that can channelize multiple lignin-based products into specific target compounds. Also, endophytes, a fascinating group of microbes residing asymptomatically within the plant tissues, exhibit marvellous lignin deconstruction potential. Apart from novel sources for potent and stable ligninases, endophytes share immense ability of depolymerizing lignin into desired valuable products. Despite their efficacy, ligninolytic studies on endophytes are meagre with incomplete understanding of the pathways involved at the molecular level. In the recent years, improvement of thermochemical methods has received much attention, however, we lagged in exploring the novel microbial groups for their delignification efficiency and optimization of this ability. This review summarizes the currently available knowledge about endophytic delignification potential with special emphasis on underlying mechanism of biological funnelling for the production of valuable products. It also highlights the recent advancements in developing the most intriguing methods to depolymerize lignin. Comparative account of thermochemical and biological techniques is accentuated with special emphasis on biological/microbial degradation. Exploring potent biological agents for delignification and focussing on the basic challenges in enhancing lignin valorization and overcoming them could make this renewable resource a promising tool to accomplish Sustainable Development Goals (SDG’s) which are supposed to be achieved by 2030.
Collapse
Affiliation(s)
| | - Skarma Nonzom
- *Correspondence: Skarma Nonzom, , orcid.org/0000-0001-9372-7900
| |
Collapse
|
13
|
Jian T, Zhou Y, Wang P, Yang W, Mu P, Zhang X, Zhang X, Chen CL. Highly stable and tunable peptoid/hemin enzymatic mimetics with natural peroxidase-like activities. Nat Commun 2022; 13:3025. [PMID: 35641490 PMCID: PMC9156750 DOI: 10.1038/s41467-022-30285-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Developing tunable and stable peroxidase mimetics with high catalytic efficiency provides a promising opportunity to improve and expand enzymatic catalysis in lignin depolymerization. A class of peptoid-based peroxidase mimetics with tunable catalytic activity and high stability is developed by constructing peptoids and hemins into self-assembled crystalline nanomaterials. By varying peptoid side chain chemistry to tailor the microenvironment of active sites, these self-assembled peptoid/hemin nanomaterials (Pep/hemin) exhibit highly modulable catalytic activities toward two lignin model substrates 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 3,3’,5,5’-tetramethylbenzidine. Among them, a Pep/hemin complex containing the pyridyl side chain showed the best catalytic efficiency (Vmax/Km = 5.81 × 10−3 s−1). These Pep/hemin catalysts are highly stable; kinetics studies suggest that they follow a peroxidase-like mechanism. Moreover, they exhibit a high efficacy on depolymerization of a biorefinery lignin. Because Pep/hemin catalysts are highly robust and tunable, we expect that they offer tremendous opportunities for lignin valorization to high value products. Peroxidase mimics are currently being investigated as catalysts for lignin depolymerisation. In this article, the authors investigate a class of self-assembled and highly stable peptoid/hemin nanomaterials as peroxidase mimics that are highly stable and tuneable for the depolymerisation of a biorefinery lignin.
Collapse
Affiliation(s)
- Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Peipei Wang
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Peng Mu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Department of Mechanical Engineering and Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xiao Zhang
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA.
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA. .,Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
14
|
Imperato V, Portillo-Estrada M, Saran A, Thoonen A, Kowalkowski Ł, Gawronski SW, Rineau F, Vangronsveld J, Thijs S. Exploring the Diversity and Aromatic Hydrocarbon Degrading Potential of Epiphytic Fungi on Hornbeams from Chronically Polluted Areas. J Fungi (Basel) 2021; 7:jof7110972. [PMID: 34829258 PMCID: PMC8620586 DOI: 10.3390/jof7110972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 01/12/2023] Open
Abstract
Plants can ‘catch’ and mitigate airborne pollutants and are assisted by fungi inhabiting their leaves. The structure and function of the fungal communities inhabiting the phyllosphere of hornbeam trees growing in two chronically polluted areas, the oilfield of Bóbrka and the city center of Warsaw, were compared to the ones growing in one nature reserve, the Białowieża National Park. Fungi were isolated and characterized both phylogenetically and functionally for their potential role in air pollution mitigation. Both culture-dependent (e.g., enzyme assays and tolerance tests) and culture-independent methods (e.g., ITS and shotgun sequencings) were used. Furthermore, the degradation potential of the fungi was assessed by gas chromatography mass spectrometry (GC-MS). Shotgun sequencing showed that the phyllosphere fungal communities were dominated by fungi belonging to the phylum Ascomycota. Aureobasidium was the only genus detected at the three locations with a relative abundance ≥1.0%. Among the cultivated epiphytic fungi from Bóbrka, Fusarium sporotrichioides AT11, Phoma herbarum AT15, and Lophiostoma sp. AT37 showed in vitro aromatic hydrocarbon degradation potential with laccase activities of 1.24, 3.62, and 7.2 μU L−1, respectively, and peroxidase enzymes with activities of 3.46, 2.28, and 7.49 μU L−1, respectively. Furthermore, Fusarium sporotrichioides AT11 and Phoma herbarum AT15 tolerated exposure to airborne naphthalene and benzene. Lophiostoma sp. AT37 was the most tolerant to exposure to these pollutants, in line with being the best potential aromatic hydrocarbon degrader isolated in this study.
Collapse
Affiliation(s)
- Valeria Imperato
- Department of Biology, Centre for Environmental Sciences, Hasselt University, BE3590 Diepenbeek, Belgium; (A.T.); (Ł.K.); (F.R.); (J.V.); (S.T.)
- Correspondence:
| | - Miguel Portillo-Estrada
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, BE2610 Wilrijk, Belgium;
| | - Anabel Saran
- AIC-CONICET, Scientific Research Agency, Santa Rosa 6360, La Pampa, Argentina;
| | - Anneleen Thoonen
- Department of Biology, Centre for Environmental Sciences, Hasselt University, BE3590 Diepenbeek, Belgium; (A.T.); (Ł.K.); (F.R.); (J.V.); (S.T.)
| | - Łukasz Kowalkowski
- Department of Biology, Centre for Environmental Sciences, Hasselt University, BE3590 Diepenbeek, Belgium; (A.T.); (Ł.K.); (F.R.); (J.V.); (S.T.)
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Stanislaw W. Gawronski
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Francois Rineau
- Department of Biology, Centre for Environmental Sciences, Hasselt University, BE3590 Diepenbeek, Belgium; (A.T.); (Ł.K.); (F.R.); (J.V.); (S.T.)
| | - Jaco Vangronsveld
- Department of Biology, Centre for Environmental Sciences, Hasselt University, BE3590 Diepenbeek, Belgium; (A.T.); (Ł.K.); (F.R.); (J.V.); (S.T.)
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 20-400 Lublin, Poland
| | - Sofie Thijs
- Department of Biology, Centre for Environmental Sciences, Hasselt University, BE3590 Diepenbeek, Belgium; (A.T.); (Ł.K.); (F.R.); (J.V.); (S.T.)
| |
Collapse
|