1
|
Jokinen N, Eronen E, Vepsäläinen J, Jänis J, Lappalainen R, Tomppo L, Tynkkynen T. 17O NMR spectroscopy protocol for the determination of water content in liquids produced by pyrolysis and hydrothermal liquefaction. Anal Chim Acta 2024; 1329:343188. [PMID: 39396278 DOI: 10.1016/j.aca.2024.343188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND There is an urgent need to replace fossil-based fuels and chemicals with bio-based, renewable alternatives. Water content is a critical parameter in these liquid products since water affects their quality and properties. However, currently existing methods for bio-oil water content determination have limitations and thus, there is a need to find methods that are versatile, work for a wide water content and sample consistency range repeatably and reliably and are safe for the user and the environment. RESULTS In this research, a17O NMR spectroscopy protocol for water content determination of pyrolysis and hydrothermal liquefaction (HTL) liquids was developed and compared with the standard method Karl Fischer (KF) titration. The approach showed linearity over a wide concentration range, and the changes to the measurement parameters caused only minor effects to the results (≤0.8 percentage points) indicating robustness. The method is also accurate since the absolute differences between experimental and theoretical water contents varied from 0.08 % to 2.09 %. Additionally, the precision of the method, based on the relative standard deviations (RSD) of the three replicate measurements of pyrolysis and HTL samples, was good (RSD <1.82 %). The method was applied to samples containing 1-98 wt% water. Overall, the 17O NMR spectroscopy and KF titration results were well aligned with each other suggesting that the 17O NMR spectroscopy is a potential alternative for the conventional KF titration. SIGNIFICANCE This is the first study on the use of 17O NMR spectroscopy protocol for water content quantification. The results indicate that the protocol is an accurate, linear, and precise technique for water content determination of a wide range of samples. Furthermore, the method does not require hazardous chemicals or calibration standards, and the sample preparation is straightforward. The non-destructiveness of the method also enables further studies on the sample, e.g. by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Noora Jokinen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70211, Finland.
| | - Eemeli Eronen
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland.
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70211, Finland.
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland.
| | - Reijo Lappalainen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70211, Finland.
| | - Laura Tomppo
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70211, Finland.
| | - Tuulia Tynkkynen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70211, Finland.
| |
Collapse
|
2
|
Merdun H, Yıldırım M. Pyrolysis and combustion of industrial hemp, coal and their blends for thermal analysis by thermogravimetric analysis/Fourier transform infrared spectrometer. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024:734242X241241604. [PMID: 38600728 DOI: 10.1177/0734242x241241604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In this study, the thermal behaviours of Cannabis sativa (CS), coal and their five different blends at a heating rate (β) of 10, 20, 30, 40 and 50°C min-1; the synergistic effects between CS and coal; and the distribution of gases formed during pyrolysis and combustion were investigated by using the thermogravimetric analysis/Fourier transform infrared spectrometer (TGA/FTIR) integrated system. The TG and DTG curves showed that the thermal decomposition of pyrolysis and combustion of all feedstocks at all β values had three main decomposition stages. The synergistic effect was observed for DTGmax, mass loss (ML), or final residue (FR) at least once at a given β of each blend; and the synergy was more effective for DTGmax and ML in pyrolysis than in combustion, whereas the opposite was true for FR. The lowest emissions of CO2, CH4, NOx and SO2 except CO during pyrolysis occurred at the blend of 0% CS + 100% Coal. However, the highest emissions of CO, CH4, NOx and SO2 except CO2 during combustion were observed at the blend of 80% CS + 20% Coal. The emissions of CO, CO2, NOx and SO2 from all samples during pyrolysis were lower than that of combustion, indicating that pyrolysis can be preferred due to its lower emission to the environment. Different structural properties of CS, coal and their blends caused different thermal behaviours, synergistic effects and gas products during pyrolysis and combustion by TGA/FTIR, suggesting detailed further investigation for upper-scale pyrolysis and combustion applications.
Collapse
Affiliation(s)
- Hasan Merdun
- Department of Environmental Engineering, Akdeniz University, Faculty of Engineering, Antalya, Türkiye
| | - Mert Yıldırım
- Department of Environmental Engineering, Akdeniz University, Faculty of Engineering, Antalya, Türkiye
| |
Collapse
|
3
|
Characterization of the Compounds Released in the Gaseous Waste Stream during the Slow Pyrolysis of Hemp ( Cannabis sativa L.). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092794. [PMID: 35566144 PMCID: PMC9100882 DOI: 10.3390/molecules27092794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022]
Abstract
This study aims to characterize and valorize hemp residual biomass by a slow pyrolysis process. The volatile by-products of hemp carbonization were characterized by several methods (TGA, UV-VIS, TLC, Flash Prep-LC, UHPLC, QTOF-MS) to understand the pyrolysis reaction mechanisms and to identify the chemical products produced during the process. The obtained carbon yield was 29%, generating a gaseous stream composed of phenols and furans which was collected in four temperature ranges (F1 at 20–150 °C, F2 at 150–250 °C, F3 at 250–400 °C and F4 at 400–1000 °C). The obtained liquid fractions were separated into subfractions by flash chromatography. The total phenolic content (TPC) varied depending on the fraction but did not correlate with an increase in temperature or with a decrease in pH value. Compounds present in fractions F1, F3 and F4, being mainly phenolic molecules such as guaiacyl or syringyl derivatives issued from the lignin degradation, exhibit antioxidant capacity. The temperature of the pyrolysis process was positively correlated with detectable phenolic content, which can be explained by the decomposition order of the hemp chemical constituents. A detailed understanding of the chemical composition of pyrolysis products of hemp residuals allows for an assessment of their potential valorization routes and the future economic potential of underutilized biomass.
Collapse
|
4
|
Brar KK, Raheja Y, Chadha BS, Magdouli S, Brar SK, Yang YH, Bhatia SK, Koubaa A. A paradigm shift towards production of sustainable bioenergy and advanced products from Cannabis/hemp biomass in Canada. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-22. [PMID: 35342682 PMCID: PMC8934023 DOI: 10.1007/s13399-022-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 05/22/2023]
Abstract
The global cannabis (Cannabis sativa) market was 17.7 billion in 2019 and is expected to reach up to 40.6 billion by 2024. Canada is the 2nd nation to legalize cannabis with a massive sale of $246.9 million in the year 2021. Waste cannabis biomass is managed using disposal strategies (i.e., incineration, aerobic/anaerobic digestion, composting, and shredding) that are not good enough for long-term environmental sustainability. On the other hand, greenhouse gas emissions and the rising demand for petroleum-based fuels pose a severe threat to the environment and the circular economy. Cannabis biomass can be used as a feedstock to produce various biofuels and biochemicals. Various research groups have reported production of ethanol 9.2-20.2 g/L, hydrogen 13.5 mmol/L, lipids 53.3%, biogas 12%, and biochar 34.6% from cannabis biomass. This review summarizes its legal and market status (production and consumption), the recent advancements in the lignocellulosic biomass (LCB) pre-treatment (deep eutectic solvents (DES), and ionic liquids (ILs) known as "green solvents") followed by enzymatic hydrolysis using glycosyl hydrolases (GHs) for the efficient conversion efficiency of pre-treated biomass. Recent advances in the bioconversion of hemp into oleochemicals, their challenges, and future perspectives are outlined. A comprehensive insight is provided on the trends and developments of metabolic engineering strategies to improve product yield. The thermochemical processing of disposed-off hemp lignin into bio-oil, bio-char, synthesis gas, and phenol is also discussed. Despite some progress, barricades still need to be met to commercialize advanced biofuels and compete with traditional fuels.
Collapse
Affiliation(s)
- Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 India
| | | | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Ahmed Koubaa
- Institut de Recherche Sur Les Forêts, Université du Québec en Abitibi-Témiscamingue, Université, Rouyn-Noranda, 445 Boulevard de l’ Université, Rouyn-Noranda, QC J9X5E4 Canada
| |
Collapse
|
5
|
Cannabis sativa Bioactive Compounds and Their Extraction, Separation, Purification, and Identification Technologies: An Updated Review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116554] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|