1
|
Cordella F, Faure S, Taillefumier C, Pescitelli G, Martinelli E, Alonci G, Liu Z, Angelici G. On the Reactivity of (S)-Indoline-2-Carboxylic Acid. Chirality 2024; 36:e70008. [PMID: 39681463 DOI: 10.1002/chir.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/04/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024]
Abstract
(S)-Indoline-2-carboxylic acid (H-(2S)-Ind-OH) possesses the ability to influence the conformation of peptide bonds towards the cis amide isomer in polar solvents. However, its potential utilization as a conformational switch within long peptide sequences poses challenges due to its low reactivity and strong inclination to form diketopiperazines. The present study explores its reactivity under various conditions and proposes synthetic strategies to overcome these limitations. A series of H-(2S)-Ind-OH containing di- and tri-peptides have been efficiently synthesized and characterized, ready to be inserted in more complex and longer sequences.
Collapse
Affiliation(s)
- Fabiana Cordella
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Sophie Faure
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, Clermont-Ferrand, France
| | - Claude Taillefumier
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, Clermont-Ferrand, France
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | | | - Zhengming Liu
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Gaetano Angelici
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| |
Collapse
|
2
|
Schäfer V, Pianowski ZL. Heterocyclic Hemipiperazines: Multistimuli-Responsive Switches and Sensors for Zinc or Cadmium Ions. Chemistry 2024; 30:e202402005. [PMID: 38980960 DOI: 10.1002/chem.202402005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
Advance in the design of molecular photoswitches - adapters that convert light into changes at molecular level - opens up exciting possibilities in preparing smart polymers, drugs photoactivated inside humans, or light-fueled nanomachines that might in the future operate in our bloodstream. Hemipiperazines are recently reported biocompatible molecular photoswitches based on cyclic dipeptides. Here we report a multistimuli-responsive hemipiperazine-based switch that reacts on light, solvents, acidity, or metal ions. Its photoequilibration is controlled by the intramolecular hydrogen bonding pattern. The compound can be used as a mid-nanomolar photoswitchable fluorescent sensor for zinc and cadmium ions, applicable to monitor environmental pollution in real time.
Collapse
Affiliation(s)
- Valentin Schäfer
- Institute of Organic Chemistry IOC KIT, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institute of Biological and Chemical Systems - Functional Molecular Systems IBCS-FMS KIT, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
- Institute of Organic Chemistry IOC KIT, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| |
Collapse
|
3
|
Divanach P, Fanouraki E, Mitraki A, Harmandaris V, Rissanou AN. Investigating the complexation propensity of self-assembling dipeptides with the anticancer peptide-drug Bortezomib: a computational study. SOFT MATTER 2023; 19:8684-8697. [PMID: 37846478 DOI: 10.1039/d3sm00930k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The investigation of potential self-assembled peptides as carriers for the delivery of anticancer drug Bortezomib is the topic of the present study. The self-assembly of Bortezomib in water is examined using all-atom molecular dynamics simulations and corresponding experimental results from FESEM experiments. In addition, a series of dipeptides with a similar chemical formula to Bortezomib with hydrogel-forming ability are being investigated for their propensity to bind to the drug molecule. Dipeptides are divided into two classes, the protected FF (Fmoc-FF and Z-FF) and the LF-based (Cyclo-LF and LF) ones. The thermodynamic stability of the complexes formed in an aqueous environment, as well as key morphological features of the nanoassemblies are investigated at the molecular level. Binding enthalpy between Bortezomib and dipeptides follows the increasing order: LF < Cyclo-LF < Fmoc-FF < Z-FF under both van der Waals and electrostatic contributions. Protected FF dipeptides have a higher affinity for the drug molecule, which will favor its entrapment, giving them an edge over the LF based dipeptides. By evaluating the various measures, regarding both the binding between the two components and the eventual ability of controlled drug release, we conclude that the protected FF class is a more suitable candidate for drug release of Bortezomib, whereas among its two members, Fmoc-FF appears to be more promising. The selection of the optimal candidates based on the present computational study will be a stepping stone for future detailed experimental studies involving the encapsulation and controlled release of Bortezomib both in vitro and in vivo.
Collapse
Affiliation(s)
- Peter Divanach
- Department of Materials Science and Technology, University of Crete, Voutes Campus Greece, Crete, Greece.
- Institute of Electronic Structure and Laser/Foundation for Research and Technology-Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | - Eirini Fanouraki
- Department of Materials Science and Technology, University of Crete, Voutes Campus Greece, Crete, Greece.
- Institute of Electronic Structure and Laser/Foundation for Research and Technology-Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Voutes Campus Greece, Crete, Greece.
- Institute of Electronic Structure and Laser/Foundation for Research and Technology-Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas, (FORTH), IACM/FORTH, GR-71110 Heraklion, Crete, Greece.
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409, Heraklion, Crete, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Anastassia N Rissanou
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas, (FORTH), IACM/FORTH, GR-71110 Heraklion, Crete, Greece.
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
4
|
Alletto P, Garcia AM, Marchesan S. Short Peptides for Hydrolase Supramolecular Mimicry and Their Potential Applications. Gels 2023; 9:678. [PMID: 37754360 PMCID: PMC10529927 DOI: 10.3390/gels9090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrolases are enzymes that have found numerous applications in various industrial sectors spanning from pharmaceuticals to foodstuff and beverages, consumers' products such as detergents and personal care, textiles, and even for biodiesel production and environmental bioremediation. Self-assembling and gelling short peptides have been designed for their mimicry so that their supramolecular organization leads to the creation of hydrophobic pockets for catalysis to occur. Catalytic gels of this kind can also find numerous industrial applications to address important global challenges of our time. This concise review focuses on the last 5 years of progress in this fast-paced, popular field of research with an eye towards the future.
Collapse
Affiliation(s)
- Paola Alletto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ana Maria Garcia
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
5
|
Li L, Xu Z, Cao R, Li J, Wu CJ, Wang Y, Zhu H. Effects of hydroxyl group in cyclo(Pro-Tyr)-like cyclic dipeptides on their anti-QS activity and self-assembly. iScience 2023; 26:107048. [PMID: 37360689 PMCID: PMC10285644 DOI: 10.1016/j.isci.2023.107048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
We investigated the influence of hydroxyl groups on the anti-quorum-sensing (anti-QS) and anti-biofilm activity of structurally similar cyclic dipeptides, namely cyclo(L-Pro-L-Tyr), cyclo(L-Hyp-L-Tyr), and cyclo(L-Pro-L-Phe), against Pseudomonas aeruginosa PAO1. Cyclo(L-Pro-L-Phe), lacking hydroxyl groups, displayed higher virulence factor inhibition and cytotoxicity, but showed less inhibitory ability in biofilm formation. Cyclo(L-Pro-L-Tyr) and cyclo(L-Hyp-L-Tyr) suppressed genes in both the las and rhl systems, whereas cyclo(L-Pro-L-Phe) mainly downregulated rhlI and pqsR expression. These cyclic dipeptides interacted with the QS-related protein LasR, with similar binding efficiency to the autoinducer 3OC12-HSL, except for cyclo(L-Pro-L-Phe) which had lower affinity. In addition, the introduction of hydroxyl groups significantly improved the self-assembly ability of these peptides. Both cyclo(L-Pro-L-Tyr) and cyclo(L-Hyp-L-Tyr) formed assembly particles at the highest tested concentration. The findings revealed the structure-function relationship of this kind of cyclic dipeptides and provided basis for our follow-up research in the design and modification of anti-QS compounds.
Collapse
Affiliation(s)
- Li Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zuxian Xu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ruipin Cao
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiaxin Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yinglu Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
6
|
Cringoli MC, Marchesan S. Cysteine Redox Chemistry in Peptide Self-Assembly to Modulate Hydrogelation. Molecules 2023; 28:4970. [PMID: 37446630 DOI: 10.3390/molecules28134970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cysteine redox chemistry is widely used in nature to direct protein assembly, and in recent years it has inspired chemists to design self-assembling peptides too. In this concise review, we describe the progress in the field focusing on the recent advancements that make use of Cys thiol-disulfide redox chemistry to modulate hydrogelation of various peptide classes.
Collapse
Affiliation(s)
- Maria Cristina Cringoli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
7
|
Divanach P, Fanouraki E, Mitraki A, Harmandaris V, Rissanou AN. Self-Assembly of Phenylalanine-Leucine, Leucine-Phenylalanine, and Cyclo(-leucine-phenylalanine) Dipeptides through Simulations and Experiments. J Phys Chem B 2023; 127:4208-4219. [PMID: 37148280 DOI: 10.1021/acs.jpcb.2c08576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
For over two decades, peptide self-assembly has been the focus of attention and a great source of inspiration for biomedical and nanotechnological applications. The resulting peptide nanostructures and their properties are closely related to the information encoded within each peptide building block, their sequence, and their modes of self-organization. In this work. we assess the behavior and differences between the self-association of the aromatic-aliphatic Phe-Leu dipeptide compared to its retro-sequence Leu-Phe and cyclic Cyclo(-Leu-Phe) counterparts, using a combination of simulation and experimental methods. Detailed all-atom molecular dynamics (MD) simulations offer a quantitative prediction at the molecular level of the conformational, dynamical and structural properties of the peptides' self-assembly, while field emission scanning electron microscopy (FESEM) experiments allow microscopic observation of the self-assembled end-structures. The complementarity and qualitative agreement between the two methods not only highlights the differences between the self-assembly propensity of cyclic and linear retro-sequence peptides but also sheds light on underlying mechanisms of self-organization. The self-assembling propensity was found to follow the order: Cyclo(-Leu-Phe) > Leu-Phe > Phe-Leu.
Collapse
Affiliation(s)
- Peter Divanach
- Department of Materials Science and Technology, University of Crete, GR-70013 Voutes Campus, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, GR-71110 Heraklion, Crete, Greece
| | - Eirini Fanouraki
- Department of Materials Science and Technology, University of Crete, GR-70013 Voutes Campus, Greece
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, GR-70013 Voutes Campus, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, GR-71110 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas, (FORTH), IACM/FORTH, GR-71110 Heraklion, Crete, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Anastassia N Rissanou
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
- National Hellenic Research Foundation, Theoretical & Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, GR-11635 Athens, Greece
| |
Collapse
|
8
|
Koshizuka M, Shinoda K, Makino K, Shimada N. Concise Synthesis of 2,5-Diketopiperazines via Catalytic Hydroxy-Directed Peptide Bond Formations. J Org Chem 2023. [PMID: 37125993 DOI: 10.1021/acs.joc.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
2,5-Diketopiperazines (DKPs) with hydroxymethyl functional groups are essential structures found in many bioactive molecules and functional materials. We have established a simple protocol for the concise synthesis of this type of DKPs through diboronic acid anhydride-catalyzed hydroxy-directed peptide bond formations. The sequential reactions in this report, which consist of three steps, an intermolecular catalytic condensation reaction in which water is the only byproduct, a simple deprotection of the nitrogen-protecting group, and an intramolecular cyclization, enabled the synthesis of functionalized DKPs in high to excellent yields without any intermediate purification. The utility of this protocol has been demonstrated by synthesizing natural products, phomamide and Cyclo(Deala-l-Leu).
Collapse
Affiliation(s)
- Masayoshi Koshizuka
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kaito Shinoda
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| |
Collapse
|
9
|
Santos D, Baptista RMF, Handa A, Almeida B, Rodrigues PV, Torres AR, Machado A, Belsley M, de Matos Gomes E. Bioinspired Cyclic Dipeptide Functionalized Nanofibers for Thermal Sensing and Energy Harvesting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2477. [PMID: 36984357 PMCID: PMC10055687 DOI: 10.3390/ma16062477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Nanostructured dipeptide self-assemblies exhibiting quantum confinement are of great interest due to their potential applications in the field of materials science as optoelectronic materials for energy harvesting devices. Cyclic dipeptides are an emerging outstanding group of ring-shaped dipeptides, which, because of multiple interactions, self-assemble in supramolecular structures with different morphologies showing quantum confinement and photoluminescence. Chiral cyclic dipeptides may also display piezoelectricity and pyroelectricity properties with potential applications in new sources of nano energy. Among those, aromatic cyclo-dipeptides containing the amino acid tryptophan are wide-band gap semiconductors displaying the high mechanical rigidity, photoluminescence and piezoelectric properties to be used in power generation. In this work, we report the fabrication of hybrid systems based on chiral cyclo-dipeptide L-Tryptophan-L-Tryptophan incorporated into biopolymer electrospun fibers. The micro/nanofibers contain self-assembled nano-spheres embedded into the polymer matrix, are wide-band gap semiconductors with 4.0 eV band gap energy, and display blue photoluminescence as well as relevant piezoelectric and pyroelectric properties with coefficients as high as 57 CN-1 and 35×10-6 Cm-2K-1, respectively. Therefore, the fabricated hybrid mats are promising systems for future thermal sensing and energy harvesting applications.
Collapse
Affiliation(s)
- Daniela Santos
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rosa M. F. Baptista
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Adelino Handa
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bernardo Almeida
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pedro V. Rodrigues
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - Ana R. Torres
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - Ana Machado
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - Michael Belsley
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Etelvina de Matos Gomes
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Shinde SD, Kulkarni N, Sahu B. Synthesis and Investigation of Backbone Modified Squaramide Dipeptide Self-Assembly. ACS APPLIED BIO MATERIALS 2023; 6:507-518. [PMID: 36716238 DOI: 10.1021/acsabm.2c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dipeptides are minimalistic peptide building blocks that form well ordered structures through molecular self-assembly. The driving forces involved are cooperative noncovalent interactions such as π-π stacking, hydrogen bonding, and ionic as well as hydrophobic interactions. One of the most intriguing self-assembled motifs that has been extensively explored as a low molecular weight hydrogel for drug delivery, tissue engineering, imaging and techtonics, etc. is Phe-Phe (FF). The backbone of the dipeptide is very crucial for extending secondary structures in self-assembly, and any subtle change in the backbone drastically affect the molecular recognitions. The squaramide (SQ) motif has the unique advantage of hydrogen bonding which can promote the self-assembly process. In this work we have integrated the SQ unit into the dipeptide FF backbone to achieve molecular self-assembly. The resulting carbamate protected backbone modified dipeptide (BocFSAF-OH, 10) has exhibited molecular self-assembly with a fibrilar network. It formed a stable hydrogel (with CAC of 0.024 ± 0.0098 wt %) via the solvent switch method and was found to possess excellent enzymatic stability. The dipeptide and the resulting hydrogel were found to be cytocompatible. When integrated with a polysaccharide based biopolymer, e.g. sodium alginate, the resulting matrix exhibited strong hydrogel character. Therefore, the dipeptide hydrogel of 10 may find its applications in a variety of fields including drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|
11
|
Bellotto O, D'Andrea P, Marchesan S. Nanotubes and water-channels from self-assembling dipeptides. J Mater Chem B 2023. [PMID: 36790014 DOI: 10.1039/d2tb02643k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Dipeptides are attractive building blocks for biomaterials in light of their inherent biocompatibility, biodegradability, and simplicity of preparation. Since the discovery of diphenylalanine (Phe-Phe) self-assembling ability into nanotubes, research efforts have been devoted towards the identification of other dipeptide sequences capable of forming these interesting nanomorphologies, although design rules towards nanotube formation are still elusive. In this review, we analyze the dipeptide sequences reported thus far for their ability to form nanotubes, which often feature water-filled supramolecular channels as revealed by single-crystal X-ray diffraction, as well as their properties, and their potential biological applications, which span from drug delivery and regenerative medicine, to bioelectronics and bioimaging.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chem. Pharm. Sc. Dept., University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Paola D'Andrea
- Life Sc. Dept., University of Trieste, Via Weiss 2, 34128 Trieste, Italy
| | - Silvia Marchesan
- Chem. Pharm. Sc. Dept., University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy. .,INSTM, Unit of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
12
|
Huo Y, Hu J, Yin Y, Liu P, Cai K, Ji W. Self-Assembling Peptide-Based Functional Biomaterials. Chembiochem 2023; 24:e202200582. [PMID: 36346708 DOI: 10.1002/cbic.202200582] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Peptides can self-assemble into various hierarchical nanostructures through noncovalent interactions and form functional materials exhibiting excellent chemical and physical properties, which have broad applications in bio-/nanotechnology. The self-assembly mechanism, self-assembly morphology of peptide supramolecular architecture and their various applications, have been widely explored which have the merit of biocompatibility, easy preparation, and controllable functionality. Herein, we introduce the latest research progress of self-assembling peptide-based nanomaterials and review their applications in biomedicine and optoelectronics, including tissue engineering, anticancer therapy, biomimetic catalysis, energy harvesting. We believe that this review will inspire the rational design and development of novel peptide-based functional bio-inspired materials in the future.
Collapse
Affiliation(s)
- Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jian Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
13
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
14
|
Self-Assembly and Gelation Study of Dipeptide Isomers with Norvaline and Phenylalanine. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dipeptides have emerged as attractive building blocks for supramolecular materials thanks to their low-cost, inherent biocompatibility, ease of preparation, and environmental friendliness as they do not persist in the environment. In particular, hydrophobic amino acids are ideal candidates for self-assembly in polar and green solvents, as a certain level of hydrophobicity is required to favor their aggregation and reduce the peptide solubility. In this work, we analyzed the ability to self-assemble and the gel of dipeptides based on the amino acids norvaline (Nva) and phenylalanine (Phe), studying all their combinations and not yielding to enantiomers, which display the same physicochemical properties, and hence the same self-assembly behavior in achiral environments as those studied herein. A single-crystal X-ray diffraction of all the compounds revealed fine details over their molecular packing and non-covalent interactions.
Collapse
|
15
|
Rosetti B, Scarel E, Colomina-Alfaro L, Adorinni S, Pierri G, Bellotto O, Mamprin K, Polentarutti M, Bandiera A, Tedesco C, Marchesan S. Self-Assembly of Homo- and Hetero-Chiral Cyclodipeptides into Supramolecular Polymers towards Antimicrobial Gels. Polymers (Basel) 2022; 14:4554. [PMID: 36365547 PMCID: PMC9654196 DOI: 10.3390/polym14214554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
There is an increasing interest towards the development of new antimicrobial coatings, especially in light of the emergence of antimicrobial resistance (AMR) towards common antibiotics. Cyclodipeptides (CDPs) or diketopiperazines (DKPs) are attractive candidates for their ability to self-assemble into supramolecular polymers and yield gel coatings that do not persist in the environment. In this work, we compare the antimicrobial cyclo(Leu-Phe) with its heterochiral analogs cyclo(D-Leu-L-Phe) and cyclo(L-Leu-D-Phe), as well as cyclo(L-Phe-D-Phe), for their ability to gel. The compounds were synthesized, purified by HPLC, and characterized by 1H-NMR, 13C-NMR, and ESI-MS. Single-crystal X-ray diffraction (XRD) revealed details of the intermolecular interactions within the supramolecular polymers. The DKPs were then tested for their cytocompatibility on fibroblast cells and for their antimicrobial activity on S. aureus. Overall, DKPs displayed good cytocompatibility and very mild antimicrobial activity, which requires improvement towards applications.
Collapse
Affiliation(s)
- Beatrice Rosetti
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Erica Scarel
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | | | - Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Giovanni Pierri
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
| | - Ottavia Bellotto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Kevin Mamprin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | | | | | - Consiglia Tedesco
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
16
|
Cyclodipeptides: From Their Green Synthesis to Anti-Age Activity. Biomedicines 2022; 10:biomedicines10102342. [PMID: 36289604 PMCID: PMC9598056 DOI: 10.3390/biomedicines10102342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cyclodipeptides (CDPs) or diketopiperazines (DKPs) are often found in nature and in foodstuff and beverages and have attracted great interest for their bioactivities, biocompatibility, and biodegradability. In the laboratory, they can be prepared by green procedures, such as microwave-assisted cyclization of linear dipeptides in water, as performed in this study. In particular, five CDPs were prepared and characterized by a variety of methods, including NMR and ESI-MS spectroscopies and single-crystal X-ray diffraction (XRD), and their cytocompatibility and anti-aging activity was tested in vitro, as well as their ability to penetrate the different layers of the skin. Although their mechanism of action remains to be elucidated, this proof-of-concept study lays the basis for their future use in anti-age cosmetic applications.
Collapse
|
17
|
Chotera‐Ouda A, Jeziorna A, Kaźmierski S, Dolot R, Dudek MK, Potrzebowski MJ. “Crystal memory” Affects the Properties of Peptide Hydrogels – The Case of the Cyclic Tyr‐Tyr dipeptide. Chemistry 2022; 28:e202202005. [DOI: 10.1002/chem.202202005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Agata Chotera‐Ouda
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| | - Agata Jeziorna
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
- Lodz Institute of Technology Łukasiewicz Research Network M. Sklodowskiej-Curie 19/27 90-570 Lodz Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| | - Marta K. Dudek
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| | - Marek J. Potrzebowski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| |
Collapse
|
18
|
Short Peptide-Based Smart Thixotropic Hydrogels †. Gels 2022; 8:gels8090569. [PMID: 36135280 PMCID: PMC9498505 DOI: 10.3390/gels8090569] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022] Open
Abstract
Thixotropy is a fascinating feature present in many gel systems that has garnered a lot of attention in the medical field in recent decades. When shear stress is applied, the gel transforms into sol and immediately returns to its original state when resting. The thixotropic nature of the hydrogel has inspired scientists to entrap and release enzymes, therapeutics, and other substances inside the human body, where the gel acts as a drug reservoir and can sustainably release therapeutics. Furthermore, thixotropic hydrogels have been widely used in various therapeutic applications, including drug delivery, cornea regeneration and osteogenesis, to name a few. Because of their inherent biocompatibility and structural diversity, peptides are at the forefront of cutting-edge research in this context. This review will discuss the rational design and self-assembly of peptide-based thixotropic hydrogels with some representative examples, followed by their biomedical applications.
Collapse
|
19
|
Wang Y, Pan L, Li L, Cao R, Zheng Q, Xu Z, Wu CJ, Zhu H. Glycosylation increases the anti-QS as well as anti-biofilm and anti-adhesion ability of the cyclo (L-Trp-L-Ser) against Pseudomonas aeruginosa. Eur J Med Chem 2022; 238:114457. [DOI: 10.1016/j.ejmech.2022.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
|
20
|
Sweatman MB, Afify ND, Ferreiro-Rangel CA, Jorge M, Sefcik J. Molecular Dynamics Investigation of Clustering in Aqueous Glycine Solutions. J Phys Chem B 2022; 126:4711-4722. [PMID: 35729500 PMCID: PMC9251761 DOI: 10.1021/acs.jpcb.2c01975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/30/2022] [Indexed: 12/23/2022]
Abstract
Recent experiments with undersaturated aqueous glycine solutions have repeatedly exhibited the presence of giant liquid-like clusters or nanodroplets around 100 nm in diameter. These nanodroplets re-appear even after careful efforts for their removal and purification of the glycine solution. The composition of these clusters is not clear, although it has been suggested that they are mainly composed of glycine, a small and very soluble amino acid. To gain insights into this phenomenon, we study the aggregation of glycine in aqueous solutions at concentrations below the experimental solubility limit using large-scale molecular dynamics simulations under ambient conditions. Three protonation states of glycine (zwitterion = GLZ, anion = GLA, and cation = GLC) are simulated using molecular force fields based on the 1.14*CM1A partial charge scheme, which incorporates the OPLS all-atom force field and TIP3P water. When initiated from dispersed states, we find that giant clusters do not form in our simulations unless salt impurities are present. Moreover, if simulations are initiated from giant cluster states, we find that they tend to dissolve in the absence of salt impurities. Therefore, the simulation results provide little support for the possibility that the giant clusters seen in experiments are composed purely of glycine (and water). Considering that strenuous efforts are made in experiments to remove impurities such as salt, we propose that the giant clusters observed might instead result from the aggregation of reaction products of aqueous glycine, such as diketopiperazine or other oligoglycines which may be difficult to separate from glycine using conventional methods, or their co-aggregation with glycine.
Collapse
Affiliation(s)
- Martin B. Sweatman
- School
of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson
Building, Mayfield Road, Edinburgh EH9 3JL, U.K.
| | - Nasser D. Afify
- School
of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson
Building, Mayfield Road, Edinburgh EH9 3JL, U.K.
| | - Carlos A. Ferreiro-Rangel
- School
of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson
Building, Mayfield Road, Edinburgh EH9 3JL, U.K.
| | - Miguel Jorge
- Department
of Chemical and Process Engineering, Faculty of Engineering, University of Strathclyde, James Weir Building, Montrose Street, Glasgow G1 1XJ, U.K.
| | - Jan Sefcik
- Department
of Chemical and Process Engineering, Faculty of Engineering, University of Strathclyde, James Weir Building, Montrose Street, Glasgow G1 1XJ, U.K.
| |
Collapse
|
21
|
Self-Assembled Peptide Nanostructures for ECM Biomimicry. NANOMATERIALS 2022; 12:nano12132147. [PMID: 35807982 PMCID: PMC9268130 DOI: 10.3390/nano12132147] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Proteins are functional building blocks of living organisms that exert a wide variety of functions, but their synthesis and industrial production can be cumbersome and expensive. By contrast, short peptides are very convenient to prepare at a low cost on a large scale, and their self-assembly into nanostructures and gels is a popular avenue for protein biomimicry. In this Review, we will analyze the last 5-year progress on the incorporation of bioactive motifs into self-assembling peptides to mimic functional proteins of the extracellular matrix (ECM) and guide cell fate inside hydrogel scaffolds.
Collapse
|
22
|
Castaldi S, Cimmino A, Masi M, Evidente A. Bacterial Lipodepsipeptides and Some of Their Derivatives and Cyclic Dipeptides as Potential Agents for Biocontrol of Pathogenic Bacteria and Fungi of Agrarian Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4591-4598. [PMID: 35395154 PMCID: PMC9026286 DOI: 10.1021/acs.jafc.1c08139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/01/2022] [Accepted: 03/23/2022] [Indexed: 06/02/2023]
Abstract
Biotic stresses (fungi, bacteria, insects, weeds, etc.) are some of the most important causes of the decrease in the quality and quantity of crops that could become an emergency due to a noteworthy increase in the world population. Thus, to overcome these problems, massive use of chemical pesticides has been carried out with heavy consequences for environmental pollution and food safety. An eco-friendly alternative can be using natural compound-based biopesticides with high efficacy and selectivity. Some bacterial lipodepsipeptides (tolaasins I, II, A, D, and E and WLIP together with hexacetyl- and tetrahydro-tolaasin I and WLIP methyl ester) and cyclic dipeptides (cyclo(l-Pro-l-Tyr), cyclo(d-Pro-l-Tyr), cyclo(l-Pro-l-Val), and cyclo(l-Pro-l-Leu)) were assayed against several pathogenic bacteria and fungi of important agrarian plants. Lipodepsipeptides showed strong growth inhibition of all microorganisms tested in the range of 0.1-0.8 μg/mL, while cyclodipeptides, despite preserving this ability, showed a noteworthily reduced antimicrobial activity being active only in the range of 15-900 μg/mL. Among the lipodepsipeptides and cyclic dipeptides assayed, tolaasin d and cyclo(l-Pro-l-Tyr) (also named maculosin-1) appeared to be the most toxic compounds. Some structure-activity relationships of lipodepsipeptides were also discussed along with their practical application as biopesticides in agriculture.
Collapse
Affiliation(s)
- Stefany Castaldi
- Department
of Biology, University of Naples Federico
II, Complesso Universitario
Monte S. Angelo, 80126 Napoli, Italy
| | - Alessio Cimmino
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso
Universitario Monte S. Angelo, 80126 Napoli, Italy
| | - Marco Masi
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso
Universitario Monte S. Angelo, 80126 Napoli, Italy
| | - Antonio Evidente
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso
Universitario Monte S. Angelo, 80126 Napoli, Italy
| |
Collapse
|
23
|
Ghosh S, Nag S, Saha KD, Banerji B. S-Benzyl Cysteine Based Cyclic Dipeptide Super Hydrogelator: Enhancing Efficacy of an Anticancer Drug via Sustainable Release. J Pept Sci 2022; 28:e3403. [PMID: 35001443 DOI: 10.1002/psc.3403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022]
Abstract
Peptide based low molecular weight supramolecular hydrogels hold promising aspects in various fields of application especially in biomaterial and biomedical sciences such as drug delivery, wound healing, tissue engineering, cell proliferation, etc due to their extreme biocompatibility. Unlike linear peptides, cyclic peptides have more structural rigidity and tolerance to enzymatic degradation and high environmental stability which make them even better candidates for the above said applications. Herein, a new small cyclic dipeptide (CDP) cyclo-(Leu-S-Bzl-Cys) (P1) consisting of L-leucine and S-benzyl protected L-cysteine was reported which formed hydrogel at physiological conditions (at 37o C and pH=7.46). The hydrogel formed from the cyclic dipeptide P1 showed very good tolerance towards environmental parameters such as pH, temperature and was seen to be stable for more than a year without any deformation. The hydrogel was thermoreversible and stable in the pH range 6-12. Mechanical strength of P1 hydrogel was measured by rheology experiment. AFM and FE-SEM images revealed that in aqueous solvents P1 self-assembled into a highly cross-linked nanofibrillar network which immobilized water molecules inside the cages and formed the hydrogel. The self-assembled cyclic dipeptide acquired antiparallel β-sheet secondary structure which was evident from CD and FT-IR studies. The β-sheet arrangement and formation of amyloid fibrils were further established by ThT binding assay. Furthermore, P1 was able to form hydrogel in presence of anticancer drug 5-fluorouracil (5FU) and sustainable release of the drug from the hydrogel was measured in-vitro. The hydrogelator P1 showed almost no cytotoxicity towards human colorectal cancer cell line HCT116 up to a considerable high concentration and showed potential application in sustainable drug delivery. The co-assembly of 5FU and P1 hydrogel exhibited much better anticancer activity towards HCT116 cancer cell line than 5-fluorouracil alone and decreased the IC50 dose of 5-fluorouracil to a much lower value.
Collapse
Affiliation(s)
- Saswati Ghosh
- Organic & Medicinal Chemistry Division, Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Sayoni Nag
- Cancer Biology & Inflammatory Disorder, Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder, Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Biswadip Banerji
- Organic & Medicinal Chemistry Division, Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
24
|
Wang X, Liu X, Ma Z, Mu C, Li W. Photochromic and photothermal hydrogels derived from natural amino acids and heteropoly acids. SOFT MATTER 2021; 17:10140-10148. [PMID: 34730172 DOI: 10.1039/d1sm01272j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new class of supramolecular hydrogels have been designed and synthesized via the co-assembly of basic amino acids (AAs) and heteropoly acids (HPAs) under acidic conditions. The formation of gel-like samples is identified using an inverted tube method, rheology, and scanning and transmission electron microscopy. Fourier transform infrared spectroscopy reveals that the structural integrity of the HPAs is maintained during the gelation process. X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance spectroscopy demonstrate that the anionic HPAs interact with both the protonated α-NH2 and the protonated side groups of the basic amino acids, initiating the preferential growth of one-dimensional nanofibers. These nanofibers bundle and entangle with each other to form extended three-dimensional network structures. The resulting AA/HPA supramolecular hydrogels show clear stereoselectivity of the basic amino acids. With the decreasing enantiomeric excess of the basic amino acids, the gelation propensity of the AA/HPA complexes is found to be depressed. The co-assembled hydrogels show the UV-responsive photochromic behaviour because of the presence of HPAs. The corresponding XPS data confirm that the photochromism of the hydrogels is attributed to the intervalence charge-transfer transition resulting from the reduction of HPAs. Interestingly, the reduced HPAs within the hydrogel matrix can absorb the near-infrared (NIR) light and exhibit photo-thermal conversion properties, which elevates the bulk temperature of the AA/HPA hydrogels and induces the gel-to-sol transition. This study unveils that HPAs have unique capacity to promote the gelation of basic amino acids for the construction of supramolecular soft materials with functional features.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Zhiyuan Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Chuanling Mu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| |
Collapse
|
25
|
Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021; 11:1515. [PMID: 34680148 PMCID: PMC8533947 DOI: 10.3390/biom11101515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Istvan Toth
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Sherif Elnagdy
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Maha AlKhazindar
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| |
Collapse
|