1
|
Badran MM, Alsubaie A, Salem Bekhit MM, Alomrani AH, Almomen A, Ibrahim MA, Alshora DH. Bioadhesive hybrid system of niosomes and pH sensitive in situ gel for itraconazole ocular delivery: Dual approach for efficient treatment of fungal infections. Saudi Pharm J 2024; 32:102208. [PMID: 39697473 PMCID: PMC11653644 DOI: 10.1016/j.jsps.2024.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Itraconazole (ITZ) is a highly effective antifungal agent. However, its oral application is associated with systemic toxicity and poor topical use. The present study aims to improve the antifungal activity of ITZ by loading it into bioadhesive niosomes. This approach is considered to enhance the ocular permeation of ITZ, thereby boosting its efficacy against fungal infections. Therefore, it was encapsulated into niosomes (F1) and subsequently coated with hyaluronic acid (HA; F2), chitosan (CS; F3), or a bilayer of CS/HA (F4). In addition, they were further incorporated into pH-sensitive in situ gels. This dual approach is expected to increase the amount of corneal-permeated ITZ, facilitating more effective management of ocular fungal infection. Firstly, the niosomes were prepared by hydrating proniosomes using span 60, cholesterol, and phospholipid. ITZ-niosomes showed an increase in vesicle size from 165.5 ± 3.4 (F1) to 378.2 ± 7.2 nm (F3). The zeta potential varied within -20.9 ± 2.1 (F1), -29.5 ± 3.1 (F2), 32.3 ± 1.9 (F3), and 22.6 ± 1.3 mV (F4). The high EE% values ranged from 78.1 ± 2.2 % to 86.6 ± 2.9 %. Regarding ITZ release, F1 demonstrated a high release profile, whereas bioadhesive niosomes showed sustained release patterns. Furthermore, in situ gels containing niosomes displayed excellent gelling capacity and viscosity. Remarkably, F3 laden-in situ gels (F3-ISG) demonstrated the highest ex vivo corneal permeability of ITZ and antifungal activity with a safety effect. These results indicate that F3-ISG presents a promising strategy for boosting the ocular delivery of ITZ, that could help in treating ocular fungal infections.
Collapse
Affiliation(s)
- Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Areej Alsubaie
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mounir M. Salem Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa Hasan Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Elmotasem H, Salama AAA, Shalaby ES. Hyaluronate functionalized Span-Labrasol nanovesicular transdermal therapeutic system of ferulic acid targeting diabetic nephropathy. Int J Biol Macromol 2024; 279:135292. [PMID: 39236956 DOI: 10.1016/j.ijbiomac.2024.135292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Diabetic kidney disease, known as diabetic nephropathy (DN), is a widespread severe diabetes complication leading to kidney failure. Due to the lack of efficacious therapies, this study endeavors to enhance DN therapeutic effectiveness of ferulic acid (FRA), a natural phenolic with poor oral bioavailability, by developing a transdermal kidney-targeted spanlastic formulation. Spanlastics (SP) nanovesicles were prepared using Span 60 and Labrasol or Brij35 as edge activators (EA). Cationic guar (CG) and hyaluronic acid (HA) were employed as coatings. The formulations were assessed for entrapment efficiency (EE), particle size (PS) and zeta potential (ZP). A 21 × 31 factorial optimization of FRA spanlastic formulations revealed the desirable nanoformula was FRA-L-H-SP comprising Labrasol and hyaluronate coating. Transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), Diphenylpicrylhydrazyl (DPPH) antioxidant activity, in-vitro release, and rat skin ex-vivo permeation assessed this formula and the uncoated one (FRA-L-SP). Biochemical indicators and histopathology for diabetes and kidney injury were evaluated in the Streptozotocin (STZ)-induced DN rat model. Results showed significant improvements after treatment with FRA-L-H-SP compared to FRA-L-SP and free FRA, with decreased blood glucose, creatinine, and intercellular adhesion molecule-1 (ICAM-1) levels and increased insulin, AMP-activated protein kinase (AMPK), and sirtuins (SIRT). This enhancement can be acknowledged as passive targeting of SP and active targeting properties of hyaluronic to cluster of differentiation 44 (CD44) receptors, revealing the potential to improve DN pathophysiology.
Collapse
Affiliation(s)
- Heba Elmotasem
- Pharmaceutical Technology Department, Drug Industries Research Institute, National Research Centre, Cairo 12622, Egypt.
| | - Abeer A A Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo 12622, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Drug Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
3
|
Sun Y, Shen X, Yang J, Tan C. Hyaluronic Acid-Coated Nanoliposomes as Delivery Systems for Fisetin: Stability, Membrane Fluidity, and Bioavailability. Foods 2024; 13:2406. [PMID: 39123596 PMCID: PMC11311619 DOI: 10.3390/foods13152406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
Fisetin has shown numerous health benefits, whereas its food application is constrained by water insolubility, poor stability, and low bioaccessibility. This work investigated the potential of hyaluronic acid (HA)-coated nanoliposomes for the encapsulation and delivery of fisetin. It was observed that HA can adsorb onto the liposomal membrane through hydrogen bonding and maintain the spherical shape of nanoliposomes. Fluorescence analysis suggested that the HA coating restricted the motion and freedom of phospholipid molecules in the headgroup region and reduced the interior micropolarity of the nanoliposomes but did not affect the fluidity of the hydrophobic core. These effects were more pronounced for the HA with a low molecular weight (35 kDa) and moderate concentration (0.4%). The HA coating improved the storage and thermal stability of the nanoliposomes, as well as the digestive stability and bioaccessibility of the encapsulated fisetin. These findings could guide the development of HA-coated nanoliposomes for the controlled delivery of hydrophobic bioactives such as fisetin in functional foods.
Collapse
Affiliation(s)
| | | | | | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.S.); (X.S.); (J.Y.)
| |
Collapse
|
4
|
Hakki SS, Bozkurt SB, Sculean A, Božić D. Hyaluronic acid enhances cell migration, viability, and mineralized tissue-specific genes in cementoblasts. J Periodontal Res 2024; 59:63-73. [PMID: 38069670 DOI: 10.1111/jre.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND/OBJECTIVES It has been repeatedly demonstrated that cementum formation is a crucial step in periodontal regeneration. Hyaluronic acid (HA) is an important component of the extracellular matrix which regulates cells functions and cell-cell communication. Hyaluronic acid/derivatives have been used in regenerative periodontal therapy, but the cellular effects of HA are still unknown. To investigate the effects of HA on cementoblast functions, cell viability, migration, mineralization, differentiation, and mineralized tissue-associated genes and cementoblast-specific markers of the cementoblasts were tested. MATERIALS AND METHODS Cementoblasts (OCCM-30) were treated with various dilutions (0, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128) of HA and examined for cell viability, migration, mineralization, and gene expressions. The mRNA expressions of osteocalcin (OCN), runt-related transcription factor 2 (Runx2), bone sialoprotein (BSP), collagen type I (COL-I), alkaline phosphatase (ALP), cementum protein-1 (CEMP-1), cementum attachment protein (CAP), and small mothers against decapentaplegic (Smad) -1, 2, 3, 6, 7, β-catenin (Ctnnb1) were performed with real-time polymerase chain reaction (RT-PCR). Total RNA was isolated on days 3 and 8, and cell viability was determined using MTT assay on days 1 and 3. The cell mineralization was evaluated by von Kossa staining on day 8. Cell migration was assessed 2, 4, 6, and 24 hours following exposure to HA dilutions using an in vitro wound healing assay (0, 1:2, 1:4, 1:8). RESULTS At dilution of 1:2 to 1:128, HA importantly increased cell viability (p < .01). HA at a dilution of 1/2 increased wound healing rates after 4 h compared to the other dilutions and the untreated control group. Increased numbers of mineralized nodules were determined at dilutions of 1:2, 1:4, and 1:8 compared with control group. mRNA expressions of mineralized tissue marker including COL-I, BSP, RunX2, ALP, and OCN significantly improved by HA treatments compared with control group both on 3 days and on 8 days (p < .01). Smad 2, Smad 3, Smad 7, and β-catenin (Ctnnb1) mRNAs were up-regulated, while Smad1 and Smad 6 were not affected by HA administration. Additionally, HA at dilutions of 1:2, 1:4, and 1:8 remarkably enhanced CEMP-1 and CAP expressions in a dilution- and time-dependent manner (p < .01). CONCLUSIONS The present results have demonstrated that HA affected the expression of both mineralized tissue markers and cementoblast-specific genes. Positive effects of HA on the cementoblast functions demonstrated that HA application may play a key role in cementum regeneration.
Collapse
Affiliation(s)
- Sema S Hakki
- Department of Periodontology, Faculty of Dentistry, Selcuk University, Konya, Turkey
| | - Serife Buket Bozkurt
- Department of Biochemistry, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Darko Božić
- Department of Periodontology, School of Dental Medicine, University Clinical hospital, Zagreb, Croatia
| |
Collapse
|
5
|
Bashkeran T, Kamaruddin AH, Ngo TX, Suda K, Umakoshi H, Watanabe N, Nadzir MM. Niosomes in cancer treatment: A focus on curcumin encapsulation. Heliyon 2023; 9:e18710. [PMID: 37593605 PMCID: PMC10428065 DOI: 10.1016/j.heliyon.2023.e18710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
Curcumin is widely used as a therapeutic drug for cancer treatment. However, its limited absorption and rapid excretion are the major therapeutic limitations to its clinical use. Using niosomes as a curcumin delivery system is a cheap, easy, and less toxic strategy for enhancing the absorption of curcumin by cells and delaying its excretion. Thus, there is a vital need to explore curcumin niosomes to configure the curcumin to suitably serve and aid current pharmacokinetics in treatments for cancer. To date, no comprehensive review has focused on the cytotoxic effects of curcumin niosomes on malignant cells. Thus, this review provides a critical analysis of the curcumin niosomes in cancer treatment, formulations of curcumin niosomes, characterizations of curcumin niosomes, and factors influencing their performance. The findings from this review article can strongly accelerate the understanding of curcumin niosomes and pave a brighter direction towards advances in the pharmaceutical, biotechnology, and medical industries.
Collapse
Affiliation(s)
- Thaaranni Bashkeran
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Azlina Harun Kamaruddin
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Trung Xuan Ngo
- Rohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Kazuma Suda
- Rohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, 560-8531, Japan
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, 560-8531, Japan
| | - Masrina Mohd Nadzir
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Ahmed MM, Ameen MSM, Abazari M, Badeleh SM, Rostamizadeh K, Mohammed SS. Chitosan-decorated and tripolyphosphate-crosslinked pH-sensitive niosomal nanogels for Controlled release of fluoropyrimidine 5-fluorouracil. Biomed Pharmacother 2023; 164:114943. [PMID: 37267634 DOI: 10.1016/j.biopha.2023.114943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
In the present study, 5-fluorouracil-loaded niosomal nanoparticles were successfully prepared and coated with chitosan and subsequently crosslinked by tripolyphosphate to form niosomal nanogels. The prepared niosomal formulations were fully characterized for their particle size, zeta potential, particle morphology, drug entrapment efficiency, and in vitro drug release profile. The prepared niosomal nanocarriers exhibited nanoscale particle sizes of 165.35 ± 2.75-322.85 ± 2.75 nm. Chitosan-coated and TPP-crosslinked niosomes exhibited a slightly decreased in particle size and a switch of zeta potential from negative to positive values. In addition, high yield percentage, drug encapsulation efficiency, and drug loading values of 92.11 ± 2.07 %, 66.59 ± 6.06, and 4.65 ± 0.5 were obtained for chitosan-coated formulations, respectively. Moreover, lowering the rate of 5-FU in vitro release was achieved within 72 h by using chitosan-coated formulations. All prepared formulations revealed hemocompatible properties in hemolysis assay with less than 5 % hemolysis percentage at their higher possible concentrations (500 µM and 1 mM). The cell viability by MTT assay showed higher anticancer activity against B16F10 cancerous cells and lower cytotoxicity toward NIH3T3 normal cells than control and pure 5-FU in the studied concentration range (10-100 µM). Investigating the cell migration inhibition properties of fabricated formulations revealed similar results with in vitro cell viability assay with a higher migration inhibition rate for B16F10 cells than NIH3T3 cells, controls, and free 5-FU.
Collapse
Affiliation(s)
- Mohammed Mahmood Ahmed
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
| | | | - Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Safa Momeni Badeleh
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral sciences, Department of Pharmacology, School of medicine, University of Washington, WA, USA.
| | - Shahen Salih Mohammed
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
| |
Collapse
|
7
|
Oransa HA, Boughdady MF, EL-Sabbagh HM. Novel Mucoadhesive Chitosomes as a Platform for Enhanced Oral Bioavailability of Cinnarizine. Int J Nanomedicine 2022; 17:5641-5660. [PMID: 36452306 PMCID: PMC9704018 DOI: 10.2147/ijn.s384494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/12/2022] [Indexed: 10/05/2024] Open
Abstract
PURPOSE Cinnarizine (CIN) is a class II BSC drug, suffering from erratic bioavailability due to its pH-dependent solubility. It has preferential absorption in the stomach. In this study, new chitosan (CS) coated niosomes of CIN (CIN-loaded chitosomes) have been developed to extend the gastric retention and ameliorate CIN oral bioavailability. METHODS Various CIN-loaded niosomes were fabricated by thin-film hydration technique and fully characterized. Based on the predetermined criteria of low particle size (PS) and high entrapment efficiency percent (EE%), niosomal formulation F1 was selected and further coated with different CS concentrations. The optimized chitosomal formulation (C2) was evaluated through solid state characterization and mucoadhesive efficiency testing. It was also subjected to cytotoxicity study on Caco-2 cells; besides, in vitro drug release, stability and pharmacokinetic studies were assessed. RESULTS The optimized chitosomal formulation (C2) exhibited an EE% of 58.30±2.75%, PS of 440 ±13.03 nm, PDI of 0.335±0.21 and ZP of +28.1±0.10 mv. Solid state characterization results revealed the compatibility between the vesicle components and the entrapment of CIN within niosomal vesicles. C2 formulation demonstrated favorable mucoadhesive efficiency. The cytotoxicity study on Caco-2 cells manifested the safety of the optimized chitosomal formulation (C2) over the free drug. Additionally, it displayed a remarkable sustaining of CIN in vitro release up to 8 h and exhibited a good stability at the refrigerated temperature up to 3 months. In vivo pharmacokinetic assessment revealed that the CIN bioavailability from the optimized chitosomal formulation C2 was enhanced by 2.79 and 1.92 folds compared to the free drug and uncoated niosomal formulation F1, respectively. The priority of the chitosomal formulation (C2) over the niosomal one (F1) was also conferred. CONCLUSION Novel formulation of chitosan coated niosomes (chitosomes) could be presented as a promising platform to improve the oral bioavailability of drugs with narrow absorption window.
Collapse
Affiliation(s)
- Hagar Ahmed Oransa
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | | |
Collapse
|
8
|
Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers (Basel) 2022; 14:polym14153217. [PMID: 35956731 PMCID: PMC9370904 DOI: 10.3390/polym14153217] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, natural polysaccharides have been considered as the ideal candidates for novel drug delivery systems because of their good biocompatibility, biodegradation, low immunogenicity, renewable source and easy modification. These natural polymers are widely used in the designing of nanocarriers, which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. A great deal of studies could be focused on developing polysaccharide nanoparticles and promoting their application in various fields, especially in biomedicine. In this review, a variety of polysaccharide-based nanocarriers were introduced, including nanoliposomes, nanoparticles, nanomicelles, nanoemulsions and nanohydrogels, focusing on the latest research progress of these nanocarriers in the treatment of diabetes and the possible strategies for further study of polysaccharide nanocarriers.
Collapse
|
9
|
Kulkarni P, Rawtani D, Rajpurohit S, Vasvani S, Barot T. Self-assembly based aerosolized hyaluronic acid (HA) loaded niosomes for lung delivery: An in-vitro and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Curcio M, Brindisi M, Cirillo G, Frattaruolo L, Leggio A, Rago V, Nicoletta FP, Cappello AR, Iemma F. Smart Lipid-Polysaccharide Nanoparticles for Targeted Delivery of Doxorubicin to Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23042386. [PMID: 35216501 PMCID: PMC8876040 DOI: 10.3390/ijms23042386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, actively-targeted (CD44-receptors) and dual stimuli (pH/redox)-responsive lipid–polymer nanoparticles were proposed as a delivery vehicle of doxorubicin hydrochloride in triple negative breast cancer cell lines. A phosphatidylcholine lipid film was hydrated with a solution of oxidized hyaluronic acid and doxorubicin, chosen as model drug, followed by a crosslinking reaction with cystamine hydrochloride. The obtained spherical nanoparticles (mean diameter of 30 nm) were found to be efficiently internalized in cancer cells by a receptor-mediated endocytosis process, and to modulate the drug release depending on the pH and redox potential of the surrounding medium. In vitro cytotoxicity assays demonstrated the safety and efficacy of the nanoparticles in enhancing the cytotoxic effect of the free anticancer drug, with the IC50 values being reduced by two and three times in MDA-MB-468 and MDA-MB-231, respectively. The combination of self-assembled phospholipid molecules with a polysaccharide counterpart acting as receptor ligand, and stimuli-responsive chemical moieties, was carried out on smart multifunctional nanoparticles able to actively target breast cancer cells and improve the in vitro anticancer activity of doxorubicin.
Collapse
Affiliation(s)
- Manuela Curcio
- Correspondence: (M.C.); (G.C.); Tel.: +39-0984-493011 (M.C.); +39-0984-493208 (G.C.)
| | | | - Giuseppe Cirillo
- Correspondence: (M.C.); (G.C.); Tel.: +39-0984-493011 (M.C.); +39-0984-493208 (G.C.)
| | | | | | | | | | | | | |
Collapse
|