1
|
Mahaprom K, Chokpaisarn J, Kunworarath N, Paduka W, Phoopha S, Limsuwan S, Neamsuvan O. In vivo analgesic, anti-inflammatory activities, and phytochemical profile of Thai herbal Kratom recipe, a traditional Thai herbal medicine for muscle pain relief. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119442. [PMID: 39929401 DOI: 10.1016/j.jep.2025.119442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thai herbal Kratom (THK), a traditional Thai remedy for muscle pain, is composed of six important medicinal plants and has been traditionally used as a compressed ball for muscle pain management. This study aimed to evaluate its phytochemical composition and biological properties, including antioxidant, anti-inflammatory, and analgesic actions. MATERIALS AND METHODS The phytochemical profile was investigated, and antioxidant activity was assessed using DPPH and ABTS scavenging assays. In vivo anti-inflammatory properties were examined using carrageenan-induced rat paw edema and ethyl phenylpropiolate (EPP)-induced ear edema, while anti-nociceptive activity was explored by the hot plate test and acetic acid-induced writhing test. RESULTS The ethanolic extract of THK was found to contain several potent phytochemicals, including 4-hydroxycoumarin, curcumin, mitragynine, aloin A, and limonin. HPLC analysis revealed a high concentration of mitragynine in the extract, with a value of 10.76 ± 0.50 mg/L. The extract demonstrated an antioxidant activity in DPPH and ABTS scavenging assays, with IC50 value of 275.15 ± 1.78 and 256.49 ± 6.66 μg/mL, respectively. Oral administration of THK at dose of 125-500 mg/kg exhibited promising anti-inflammatory activity in a dose-dependent manner by reducing carrageenan-induced rat paw edema. Topical application of THK (1-2 mg/ear) was shown to highly inhibit ear swelling at 120 min after EEP-induced inflammation, with values of 83%, which was more potent activity than indomethacin treatment at 30, 60, and 120 min. Furthermore, THK at 125 mg/kg significantly reduced pain response in both the hot plate and acetic acid-induced writhing tests. CONCLUSION This study found that the ethanolic extract of THK possesses significant anti-inflammatory and analgesic activities in vivo, supporting its traditional use for muscle pain management.
Collapse
Affiliation(s)
- Kanchapat Mahaprom
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Julalak Chokpaisarn
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Traditional Thai Medicine Hospital, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Nongluk Kunworarath
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Wanhuda Paduka
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sathianpong Phoopha
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Surasak Limsuwan
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Oratai Neamsuvan
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
2
|
Horniakova A, Mikus P, Piestansky J. Determination of Mitragynine and 7-Hydroxymitragynine in Raw Kratom Plant Material by a Multisegment Injection Capillary Zone Electrophoresis-Tandem Mass Spectrometry. J Sep Sci 2025; 48:e70106. [PMID: 40016154 DOI: 10.1002/jssc.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
A novel validated analytical approach implementing multisegment injection strategy into the capillary zone electrophoresis-tandem mass spectrometry hyphenation for determination of two psychoactive alkaloids, mitragynine (MIT), and 7-hydoxymitraginine (7-OH-MIT), in kratom raw samples was introduced. A thorough optimization of the multisegment injection strategy and extraction procedure of the alkaloids from raw powdered plant material was realized. The separation of the two secondary plant metabolites was performed in the background electrolyte composed of 100 mM formic acid. The developed and optimized analytical approach showed favorable operation and validation parameters, including linearity (r2 > 0.99), selectivity, precision (relative standard deviation in the range of 3.3%-9.4%), accuracy (relative error in the range of 92.2%-108.4%), recovery (85.1%-99.7%), or robustness (95.2%-99.7%). Furthermore, the method demonstrates high sensitivity, with the limit of detection at the concentration level of 1 and 2 ng/mL for MIT and 7-hydroxymitragynine, respectively. Finally, the method was successfully applied to determine the content of the psychoactive alkaloids in six raw kratom samples marketed as collector's items. The content of MIT and 7-OH-MIT in the kratom samples (original powdered raw material) varied from 23.15 to 35.51 and 0.43 to 0.72 µg/mg, respectively. Moreover, the developed innovative approach was assessed to evaluate sample preparation sustainability, alignment with green analytical chemistry principles, and practicality. The proposed method with enhanced sample throughput represents a very effective and promising green alternative to traditional chromatographic techniques and has high potential for implementation in pharmaceutical and toxicological practice.
Collapse
Affiliation(s)
- Andrea Horniakova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Sornsenee P, Chimplee S, Romyasamit C. Evaluation of Antibacterial, Antibiofilm, Antioxidant, and Anti-Inflammatory Activities of Kratom Leaves (Mitragyna speciosa) Fermentation Supernatant Containing Lactobacillus rhamnosus GG. Probiotics Antimicrob Proteins 2025; 17:328-340. [PMID: 37713167 DOI: 10.1007/s12602-023-10142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
Kratom (Mitragyna speciosa) leaves are commonly used to enhance endurance and treat various diseases. This study evaluated the effect of kratom leaf fermentation with Lactobacillus rhamnosus. Antibacterial activity was investigated against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli, and E. coli O157:H7. Biofilm inhibition and eradication assays were also performed. Antioxidant properties were determined by measuring the total phenolic and flavonoid content and DPPH and ABTS scavenging activities. Nitric oxide and TNF-α, IL-1β, and IL-6 expressions in LPS-stimulated RAW 264.7 macrophage cells were also measured. Aqueous kratom extract exhibited promising effects against free radicals and pro-inflammatory cytokines. Notably, all fermented kratoms showed significant antibacterial activity against the tested pathogens and antibiofilm formation by S. aureus and MRSA. Furthermore, the eradication of established biofilms of fermented kratoms was observed in S. aureus (day 2, 50 mg/mL) and E. coli (day 2, 100 mg/mL and day 4, 50 mg/mL). To the best of our knowledge, this study is the first to report that fermented and non-fermented kratoms could be nutraceutical sources of antibacterial, antibiofilm, antioxidant, and anti-inflammatory substances against related diseases and can be applied further in dietary or cosmetic products with health-promoting effects.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand.
- Research Center of Excellence in Innovation of Essential Oil, Walailak University, Thasala, Nakhon Si Thammarat, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Thasala District, Nakhon Si Thammarat, Thailand.
- Center of Excellent in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
4
|
Álvarez SA, Rocha-Guzmán NE, Gallegos-Infante JA, Cano-Dolado MP, Ibáñez E, Cifuentes A, Pérez-Martínez JD, Moreno-Jiménez MR, González-Laredo RF. Pressurized liquid extraction of oak leaf polyphenols: Solvent selection via Hansen parameters, antioxidant evaluation and monoamine-oxidase-a inhibition analysis. Food Chem 2025; 463:141212. [PMID: 39303468 DOI: 10.1016/j.foodchem.2024.141212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
This study focuses on the extraction of bioactive compounds from Quercus sideroxyla Bonpl., leaves which have been shown to possess health benefits. The extraction process was done using pressurized liquid extraction (PLE), which is efficient and preserves heat-sensitive compounds. Key factors in the process included the choice of solvents, pressure, temperature, and extraction duration. The Hansen solubility parameters analysis aided in selecting effective solvents, such as ethanol and benzyl alcohol. The extracts were found to contain phenolic compounds, flavonoids, and polyphenols with antioxidant properties. The UPLC-PDA-ESI-QqQ was employed for the precise identification and quantification of these compounds, demonstrating superior extraction of quinic acid and gallic acid at elevated temperatures. Notably, the extracts obtained through PLE exhibited significant inhibitory activity of the MAO-A enzyme, linked to neuronal and cognitive health, suggesting potential benefits in these areas.
Collapse
Affiliation(s)
- Saúl Alberto Álvarez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/ I.T. de Durango (TecNM/ITD), Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., Mexico
| | - Nuria Elizabeth Rocha-Guzmán
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/ I.T. de Durango (TecNM/ITD), Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., Mexico..
| | - José Alberto Gallegos-Infante
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/ I.T. de Durango (TecNM/ITD), Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., Mexico..
| | - María Pilar Cano-Dolado
- Food Sciences Research Institute, CIAL, CSIC-UAM, Phytochemistry and Plant Foods Functionality Lab. Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibáñez
- Food Sciences Research Institute, CIAL, CSIC-UAM, Laboratory of Foodomics. Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Alejandro Cifuentes
- Food Sciences Research Institute, CIAL, CSIC-UAM, Laboratory of Foodomics. Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Jaime David Pérez-Martínez
- Facultad de Ciencias Químicas, UASLP, Dr. Manuel Nava, Zona Universitaria, San Luis Potosí, S.L.P, Mexico
| | - Martha Rocío Moreno-Jiménez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/ I.T. de Durango (TecNM/ITD), Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., Mexico
| | - Rubén Francisco González-Laredo
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/ I.T. de Durango (TecNM/ITD), Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., Mexico
| |
Collapse
|
5
|
Hossain R, Noonong K, Nuinoon M, Majima HJ, Eawsakul K, Sompol P, Rahman MA, Tangpong J. Network Pharmacology, Molecular Docking, and In Vitro Insights into the Potential of Mitragyna speciosa for Alzheimer's Disease. Int J Mol Sci 2024; 25:13201. [PMID: 39684911 DOI: 10.3390/ijms252313201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Mitragyna speciosa Korth. Havil (MS) has a traditional use in relieving pain, managing hypertension, treating cough, and diarrhea, and as a morphine substitute in addiction recovery. Its potential in addressing Alzheimer's disease (AD), a neurodegenerative condition with no effective treatments, is under investigation. This study aims to explore MS mechanisms in treating AD through network pharmacology, molecular docking, and in vitro studies. Using network pharmacology, we identified 19 MS components that may affect 60 AD-related targets. The compound-target network highlighted significant interactions among 60 nodes and 470 edges, with an average node degree of 15.7. The KEGG enrichment analysis revealed Alzheimer's disease (hsa05010) as a relevant pathway. We connected 20 targets to tau and β-amyloid proteins through gene expression data from the AlzData database. Docking studies demonstrated high binding affinities of MS compounds like acetylursolic acid, beta-sitosterol, isomitraphylline, and speciophylline to AD-related proteins, such as AKT1, GSK3B, NFκB1, and BACE1. In vitro studies showed that ethanolic (EE), distilled water (DWE), and pressurized hot water (PHWE) extracts of MS-treated 100 μM H2O2-induced SH-SY5Y cells significantly reduced oxidative damage. This research underscores the multi-component, multi-target, and multi-pathway effects of MS on AD, providing insights for future research and potential clinical applications.
Collapse
Affiliation(s)
- Rahni Hossain
- College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kunwadee Noonong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Manit Nuinoon
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Hideyuki J Majima
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Komgrit Eawsakul
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Pradoldej Sompol
- Department of Pharmacology & Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
6
|
Paankhao N, Sangsawang A, Kantha P, Paankhao S, Promsee K, Soontara C, Kongsriprapan S, Srisapoome P, Kumwan B, Meachasompop P, Phrompanya P, Buncharoen W, Uchuwittayakul A. Antioxidant and antibacterial efficiency of the ethanolic leaf extract of Kratom (Mitragyna speciosa (Korth.) Havil) and its effects on growth, health, and disease resistance against Edwardsiella tarda infection in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109771. [PMID: 39025168 DOI: 10.1016/j.fsi.2024.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
The research examined the impact of an ethanolic extract from the leaves of Kratom (Mitragyna speciosa (Korth.) Havil.) on the growth, antioxidant capacity, immune-related gene expression, and resistance to disease caused by Edwardsiella tarda in Nile tilapia (Oreochromis niloticus). The findings revealed that the extract had the important phytochemical content in the extract included total phenolics content, total flavonoids content, vitamin C, and total antioxidant capacity and 5.42 % of the crude extract was mitragynine. The extract demonstrated antioxidant activity, as evidenced by its IC50 values against ABTS and DPPH radicals and its ferric reducing power in vitro. Moreover, the MIC-IC50 value of 0.625 mg/mL indicated that the growth of the bacteria was reduced by approximately 50 %, and the MBC was 2.50 mg/mL against E. tarda. Furthermore, the orally administered Kratom leaf extract to fingerling tilapia for 8 weeks exhibited a noticeable increase in oxidative stress, as demonstrated by the increase in MDA production in the 10 and 25 g/kg groups. It also exhibited an increase in acetylcholinesterase (AChE) activity in muscle tissue at the 50 g/kg group. However, when administered at a feeding rate of 5-10 g/kg feed, the extract showed an increase in the expression of immune-related genes (IL1, IL6, IL8, NF-kB, IFNγ, TNFα, Mx, CC-chemokine, CD4, TCRβ, MHC-IIβ, IgM, IgT, IgD) and enhanced resistance to E. tarda infection in fish. Conversely, administering the extract at 25-50 g/kg feed resulted in contrasting effects, suppressing and reducing the observed parameters. Nevertheless, feeding the extract at all concentrations for 8 weeks did not produce any changes in the histology or systemic functioning of the liver and intestines, as indicated by blood biochemistry. These findings suggest that the ethanolic leaf extract from Kratom has the potential to be used as a substitute for antibiotics in the management of bacterial infections in Nile tilapia culture, with a recommended dosage of 5-10 g/kg feed/day for a maximum of 8 weeks.
Collapse
Affiliation(s)
- Natthapong Paankhao
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Akkarasiri Sangsawang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Phunsin Kantha
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Suwinai Paankhao
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Kittipong Promsee
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Chayanit Soontara
- Kamphaeng Saen Fisheries Research Station, Faculty of Fisheries, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Sopanat Kongsriprapan
- Faculty of Science at Sriracha, Kasetsart University, Si Racha Campus, Si Racha, Chonburi, 20230, Thailand.
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Benchawan Kumwan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Pakapon Meachasompop
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Phornphan Phrompanya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Wararut Buncharoen
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Anurak Uchuwittayakul
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
7
|
Karunakaran T, Vicknasingam B, Chawarski MC. Phytochemical analysis of water and ethanol liquid extracts prepared using freshly harvested leaves of Mitragyna speciosa (Korth.). Nat Prod Res 2024:1-8. [PMID: 38842220 DOI: 10.1080/14786419.2024.2362428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Mitragyna speciosa, also known as kratom, has been reported to have a broad range of pharmacological properties. Freshly harvested leaves and their water extracts are consumed in Southeast Asia while preparations made from dried leaf material are consumed in Western countries. Our study evaluated the phytochemical composition of freshly harvested kratom leaves using LCMS/MS analysis of water and ethanol liquid extracts. Mitragynine and its congeners, including 7-hydroxymitragynine, speciocilliatine, speciogynine, paynantheine, as well as bioactive phenolics including chlorogenic acid, o-coumaric acid, quercitrin, and rutin were identified. However, 7-hydroxymitragynine was detected solely in the water-liquid extract. Currently, unknown compounds were also present in the chromatograms and mass spectra. The study results support that 7-hydroxymitragynine is a post-harvest oxidative derivative or metabolite of mitragynine. Further rigorous and comprehensive evaluations of the phytochemical composition of freshly harvested kratom leaves utilising advanced spectrometric methods are needed to establish the full spectrum of phytochemicals within the plant.
Collapse
Affiliation(s)
| | | | - Marek C Chawarski
- Departments of Emergency Medicine and Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Torgbo S, Sukyai P, Sukatta U, Böhmdorfer S, Beaumont M, Rosenau T. Cellulose fibers and ellagitannin-rich extractives from rambutan (Nephelium Lappaceum L.) peel by an eco-friendly approach. Int J Biol Macromol 2024; 259:128857. [PMID: 38143063 DOI: 10.1016/j.ijbiomac.2023.128857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
This study assesses the viability of an accelerated solvent extraction technique employing environmentally friendly solvents to extract ellagitannins while producing cellulose-rich fibers from rambutan peel. Two sequential extraction protocols were investigated: 1) water followed by acetone/water (4:1, v:v), and 2) acetone followed by acetone/water (4:1, v:v), both performed at 50 °C. The first protocol had a higher extraction yield of 51 %, and the obtained extractives featured a higher total phenolic (531.4 ± 22.0 mg-GAE/g) and flavonoid (487.3 ± 16.9 mg-QE/g) than the second protocol (495.4 ± 32.8 mg-GAE/g and 310.6 ± 31.4 mg-QE/g, respectively). The remaining extractive-free fibers were processed by bleaching using either 2 wt% sodium hydroxide with 3 wt% hydrogen peroxide or 4-5 wt% peracetic acid. Considering bleaching efficiency, yield, and process sustainability, the single bleaching treatment with 5 wt% of peracetic acid was selected as the most promising approach to yield cellulose-rich fibers. The samples were analyzed by methanolysis to determine the amount and type of poly- and oligosaccharides and studied by 13C solid-state nuclear magnetic resonance spectroscopy and thermal gravimetric analysis. The products obtained from the peels demonstrate significant potential for use in various sectors, including food, nutraceuticals, cosmetics, and paper production.
Collapse
Affiliation(s)
- Selorm Torgbo
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| | - Udomlak Sukatta
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Stefan Böhmdorfer
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - Marco Beaumont
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria.
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| |
Collapse
|
9
|
Hossain R, Sultana A, Nuinoon M, Noonong K, Tangpong J, Hossain KH, Rahman MA. A Critical Review of the Neuropharmacological Effects of Kratom: An Insight from the Functional Array of Identified Natural Compounds. Molecules 2023; 28:7372. [PMID: 37959790 PMCID: PMC10648626 DOI: 10.3390/molecules28217372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Kratom (Mitragyna speciosa Korth. Havil) has been considered a narcotic drug for years, barred by the law in many parts of the world, while extensive research over the past few decades proves its several beneficial effects, some of which are still in ambiguity. In many countries, including Thailand, the indiscriminate use and abuse of kratom have led to the loss of life. Nonetheless, researchers have isolated almost fifty pure compounds from kratom, most of which are alkaloids. The most prevalent compounds, mitragynine and 7-hydroxy mitragynine, are reported to display agonist morphine-like effects on human μ-opioid receptors and antagonists at κ- and δ-opioid receptors with multimodal effects at other central receptors. Mitragynine is also credited to be one of the modulatory molecules for the Keap1-Nrf2 pathway and SOD, CAT, GST, and associated genes' upregulatory cascades, leading it to play a pivotal role in neuroprotective actions while evidently causing neuronal disorders at high doses. Additionally, its anti-inflammatory, antioxidative, antibacterial, and gastroprotective effects are well-cited. In this context, this review focuses on the research gap to resolve ambiguities about the neuronal effects of kratom and demonstrate its prospects as a therapeutic target for neurological disorders associated with other pharmacological effects.
Collapse
Affiliation(s)
- Rahni Hossain
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Abida Sultana
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Manit Nuinoon
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kunwadee Noonong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kazi Helal Hossain
- Angiogenesis and Brain Development Laboratory, Department of Neurosciences, Huntington Medical Research Institutes (HMRI), Pasadena, CA 91105, USA;
| | - Md Atiar Rahman
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
10
|
Citti C, Laganà A, Capriotti AL, Montone CM, Cannazza G. Kratom: The analytical challenge of an emerging herbal drug. J Chromatogr A 2023; 1703:464094. [PMID: 37262932 DOI: 10.1016/j.chroma.2023.464094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
Mitragyna speciosa or kratom is emerging worldwide as a "legal" herbal drug of abuse. An increasing number of papers is appearing in the scientific literature regarding its pharmacological profile and the analysis of its chemical constituents, mainly represented by alkaloids. However, its detection and identification are not straightforward as the plant material is not particularly distinctive. Hyphenated techniques are generally preferred for the identification and quantification of these compounds, especially the main purported psychoactive substances, mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG), in raw and commercial products. Considering the vast popularity of this recreational drug and the growing concern about its safety, the analysis of alkaloids in biological specimens is also of great importance for forensic and toxicological laboratories. The review addresses the analytical aspects of kratom spanning the extraction techniques used to isolate the alkaloids, the qualitative and quantitative analytical methods and the strategies for the distinction of the naturally occurring isomers.
Collapse
Affiliation(s)
- Cinzia Citti
- Institute of Nanotechnology - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce 73100, Italy.
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| |
Collapse
|
11
|
Zhang P, Wei W, Zhang X, Wen C, Ovatlarnporn C, Olatunji OJ. Antidiabetic and antioxidant activities of Mitragyna speciosa (kratom) leaf extract in type 2 diabetic rats. Biomed Pharmacother 2023; 162:114689. [PMID: 37058820 DOI: 10.1016/j.biopha.2023.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Mitragyna speciosa is a medicinal plant with a reputation for treating pains, diabetes as well as increasing energy and sexual desires. However, there is no scientific evidence to validate the antidiabetic effect of M. speciosa. This study investigated the antidiabetic effects of M. speciosa (Krat) ethanolic extract on fructose and streptozocin (STZ)-induced type 2 diabetic rats. In vitro antioxidant and antidiabetic effects were evaluated using DPPH, ABST, FRAP and α-glucosidase inhibitory assays. Rats with fructose/STZ induced T2D were treated with Krat (100 and 400 mg/kg) or metformin (200 mg/kg) for 5 weeks via oral gavage. Krat showed good antioxidant activity and also displayed potent α-glucosidase inhibitory activity. Administration of Krat to the diabetic rats significantly improved body weight gain, restored alterations in blood glucose level, glucose tolerance, dyslipidemia (increased cholesterol, triglycerides, low-density lipoprotein-cholesterol and reduced high-density lipoprotein), hepatorenal biomarkers alterations (alanine transaminase, aspartate transaminase, alanine phosphatase, creatinine and blood urea nitrogen) and oxidative stress indices (superoxide dismutase, glutathione and malondialdehyde)in the treated diabetic rats. Furthermore, Krat also restored pancreatic histological and increased immunohistochemical aberrations in the diabetic rats. These results for the first time demonstrated the antidiabetic and antihyperlipidemic potentials of M. speciosa, thus providing scientific reinforcement for the traditional use of the plant in the treatment of diabetes.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Second People's Hospital of Wuhu City, Anhui 241001, China
| | - Wei Wei
- Second People's Hospital of Wuhu City, Anhui 241001, China
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, Anhui 241001, China
| | - Chaoling Wen
- Anhui College of Traditional Chinese Medicine, Wuhu, Anhui 241000, China.
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco; Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand.
| |
Collapse
|
12
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
13
|
Zhong J, Wang Y, Li C, Yu Q, Xie J, Dong R, Xie Y, Li B, Tian J, Chen Y. Natural variation on free, esterified, glycosylated and insoluble-bound phenolics of Rubus chingii Hu: Correlation between phenolic constituents and antioxidant activities. Food Res Int 2022; 162:112043. [DOI: 10.1016/j.foodres.2022.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
|
14
|
Srivastava R, Parambil JV. Evolution of extraction technique for the separation of bioactive compounds from Aegle marmelos. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2151470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Rashi Srivastava
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Patna, Bihar, India
| | - Jose V Parambil
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Patna, Bihar, India
| |
Collapse
|
15
|
Phesatcha B, Phesatcha K, Wanapat M. Mitragyna speciosa Korth Leaf Pellet Supplementation on Feed Intake, Nutrient Digestibility, Rumen Fermentation, Microbial Protein Synthesis and Protozoal Population in Thai Native Beef Cattle. Animals (Basel) 2022; 12:3238. [PMID: 36496759 PMCID: PMC9737993 DOI: 10.3390/ani12233238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
This experiment evaluated the use of Mitragyna speciosa Korth leaf pellets (MSLP) on feed intake and nutrient digestibility in Thai native beef cattle. Four Thai native beef cattle steers were randomly assigned according to a 4 × 4 Latin square design to receive four dietary treatments. The treatments were as follows: control (no supplementation), MSLP supplement at 10 g/hd/d, MSLP supplement at 20 g/hd/d and MSLP supplement at 30 g/hd/d, respectively. All animals were fed a concentrate mixture at 0.5% body weight, while urea lime-treated rice straws were fed ad libitum. Findings revealed that feed intakes were increased by MSLP, which also significantly increased the digestibility of dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF). Ruminal total volatile fatty acid (TVFA) concentration and propionate (C3) proportion were increased (p < 0.05) with MSLP supplementation, whereas ruminal ammonia-N (NH3-N), plasma urea nitrogen (PUN), acetate (C2), C2:C3 ratio and estimated methane (CH4) production decreased (p < 0.05). Total bacterial, Fibrobacter succinogenes and Ruminococus flavefaciens populations increased (p < 0.05) at high levels of MSLP supplementation, while protozoal populations and methanogenic archaea reduced (p < 0.05). Supplementation of MSLP also increased the efficiency of microbial nitrogen protein synthesis. Supplementing beef cattle with MSLP 10−30 g/hd/d significantly increased rumen fermentation end products and nutrient digestibility by mitigating protozoal populations and estimated CH4 production.
Collapse
Affiliation(s)
- Burarat Phesatcha
- Department of Agricultural Technology and Environment, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Kampanat Phesatcha
- Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Limcharoen T, Pouyfung P, Ngamdokmai N, Prasopthum A, Ahmad AR, Wisdawati W, Prugsakij W, Warinhomhoun S. Inhibition of α-Glucosidase and Pancreatic Lipase Properties of Mitragyna speciosa (Korth.) Havil. (Kratom) Leaves. Nutrients 2022; 14:nu14193909. [PMID: 36235558 PMCID: PMC9572452 DOI: 10.3390/nu14193909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
Kratom (Mitragyna speciosa (Korth.) Havil.) has been used to reduce blood sugar and lipid profiles in traditional medicine, and mitragynine is a major constituent in kratom leaves. Previous data on the blood sugar and lipid-altering effects of kratom are limited. In this study, phytochemical analyses of mitragynine, 7-hydroxymitragynine, quercetin, and rutin were performed in kratom extracts. The effects on α-glucosidase and pancreatic lipase activities were investigated in kratom extracts and mitragynine. The LC-MS/MS analysis showed that the mitragynine, quercetin, and rutin contents from kratom extracts were different. The ethanol extract exhibited the highest total phenolic content (TPC), total flavonoid content (TFC), and total alkaloid content (TAC). Additionally, compared to methanol and aqueous extracts, the ethanol extract showed the strongest inhibition activity against α-glucosidase and pancreatic lipase. Compared with the anti-diabetic agent acarbose, mitragynine showed the most potent α-glucosidase inhibition, with less potent activity of pancreatic lipase inhibition. Analysis of α-glucosidase and pancreatic lipase kinetics revealed that mitragynine inhibited noncompetitive and competitive effects, respectively. Combining mitragynine with acarbose resulted in a synergistic interaction with α-glucosidase inhibition. These results have established the potential of mitragynine from kratom as a herbal supplement for the treatment and prevention of diabetes mellitus.
Collapse
Affiliation(s)
- Thanchanok Limcharoen
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellent in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Phisit Pouyfung
- Center of Excellent in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ngamrayu Ngamdokmai
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellent in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Aruna Prasopthum
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Biomass and Oil Palm Center of Excellent, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Aktsar Roskiana Ahmad
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas of Muslim Indonesia, Makassar 90241, Indonesia
| | - Wisdawati Wisdawati
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas of Muslim Indonesia, Makassar 90241, Indonesia
| | - Woraanong Prugsakij
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sakan Warinhomhoun
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellent in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence:
| |
Collapse
|
17
|
Effects of Supplementing Finishing Goats with Mitragyna speciosa (Korth) Havil Leaves Powder on Growth Performance, Hematological Parameters, Carcass Composition, and Meat Quality. Animals (Basel) 2022; 12:ani12131637. [PMID: 35804536 PMCID: PMC9264776 DOI: 10.3390/ani12131637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
The objective of this study was to see how dried Mitragyna speciosa Korth leaves (DKTL) affected growth, hematological parameters, carcass characteristics, muscle chemical composition, and fatty acid profile in finishing goats. In a randomized complete block design, twenty crossbred males (Thai Native x Boer) weaned goats (17.70 ± 2.50 kg of initial body weight (BW)) were provided to the experimental animals (5 goats per treatment) for 90 days. Individual dietary treatments of 0, 2.22, 4.44, and 6.66 g/d of DKTL on a dry matter basis were given to the goats. The diets were provided twice daily as total mixed rations ad libitum. In comparison to the control diet, DKTL supplementation had no effect on BW, average daily gain (ADG), feed conversion ratio (FCR), carcass composition, meat pH, or meat color (p > 0.05). After DKTL treatment, the hot carcass weight, longissimus muscle area, oleic acid (C18:1n9), monounsaturated fatty acid (MUFA), and protein content increased, but saturated fatty acids (SFA) and ether extract decreased (p < 0.05). To summarize, DKTL supplementation can improve goat meat quality.
Collapse
|
18
|
LC/ESI/TOF-MS Characterization, Anxiolytic and Antidepressant-like Effects of Mitragyna speciosa Korth Extract in Diabetic Rats. Molecules 2022; 27:molecules27072208. [PMID: 35408607 PMCID: PMC9000756 DOI: 10.3390/molecules27072208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 01/15/2023] Open
Abstract
In this study, the attenuative effects of the hydro-alcoholic extract from Mitragyna speciosa (MSE) against diabetes-induced anxiety and depression-like behaviors were examined. In addition, UPLC/ESI/TOF-MS analysis was performed to identify the phytochemical nature of MSE. DM was induced using a combination of high fructose/streptozotocin, and the diabetic rats were treated with MSE (50 and 200 mg/kg) for 5 weeks. After treatment, the animals were subjected to a forced swim test, open field test and elevated plus-maze tests. Additionally, proinflammatory cytokines and oxidative stress parameters were evaluated in the brain tissues of the rats. UPLC/ESI/TOF-MS analysis revealed that MSE is abundantly rich in polyphenolic constituents, notably flavonoid and phenolic glycosides. Behavioral tests and biochemical analyses indicated that diabetic rats showed significantly increased anxiety and depressive-like behavioral deficits, brain oxidative stress and pro-inflammatory cytokines levels (IL-1β, IL-6 and TNF-α). Treatment with MSE (50 and 200 mg/kg) significantly attenuated increased blood glucose level, depressive and anxiety-like behaviors in diabetic rats. Additionally, the antioxidant enzymes activities were markedly increased in MSE-treated animals, while TNF-α, IL-1β and IL-6 cytokines were notably suppressed. Taken together, these results suggested that MSE has potentials as antidepressant and anxiolytic-like effects and improves the brain oxido-inflammatory status in diabetic rats.
Collapse
|
19
|
Effect of Feed Supplement Containing Dried Kratom Leaves on Apparent Digestibility, Rumen Fermentation, Serum Antioxidants, Hematology, and Nitrogen Balance in Goats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The objectives of the present study were to examine the influence of supplementation with dried kratom leaf (DKTL) on the performance, hematology, and nitrogen balance in goats. Four 12-month-old male crossbred (Thai Native x Anglo Nubian) goats with an initial body weight (BW) of 24.63 ± 0.95 kg were allocated randomly to receive four different levels of DKTL using a 4 × 4 Latin square design. The DKTL was added to a total mixed ration (TMR) diet with doses of 0, 2.22, 4.44, and 6.66 g/day to investigate the treatment’s efficacy. The DKTL was high in secondary metabolites, including mitragynine, total phenolics, total tannins, flavonoids, and saponins. There were quadratic effects on total DMI in terms of kg/day (p = 0.04), %BW (p = 0.05), and g/kg BW.75 (p = 0.02). DKTL increased apparent digestibility with quadratic effects (DM; p = 0.01, OM; p = 0.01, CP; p = 0.04, NDF; p = 0.01, and ADF; p = 0.01). The pH value was within the rumen’s normal pH range, whereas NH3-N and BUN concentrations were lower with DKTL supplementation, and also reduced cholesterol (CHOL, p = 0.05) and low-density lipoprotein (LDL, p = 0.01). The protozoa population decreased linearly as DKTL levels increased (p < 0.01), whereas Fibrobacter succinogenes increased quadratically at 0 h (p = 0.02), and mean values increased linearly (p < 0.01). The average value of acetic acid (C2) and methane production (CH4) decreased linearly (p < 0.05) when DKLT was added to the diet, whereas the quantity of propionic acid (C3) increased linearly (p = 0.01). Our results indicate that DKTL could be a great alternative supplement for goat feed. We believe that DKTL could provide opportunities to assist the goat meat industry in fulfilling the demands of health-conscious consumers.
Collapse
|
20
|
Karunakaran T, Ngew KZ, Zailan AAD, Mian Jong VY, Abu Bakar MH. The Chemical and Pharmacological Properties of Mitragynine and Its Diastereomers: An Insight Review. Front Pharmacol 2022; 13:805986. [PMID: 35281925 PMCID: PMC8907881 DOI: 10.3389/fphar.2022.805986] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Mitragynine, is a naturally occurring indole alkaloid that can be isolated from the leaves of a psychoactive medicinal plant. Mitragyna speciosa, also known as kratom, is found to possess promising analgesic effects on mediating the opioid receptors such as µ (MOR), δ (DOR), and κ (KOR). This alkaloid has therapeutic potential for pain management as it has limited adverse effect compared to a classical opioid, morphine. Mitragynine is frequently regarded to behave like an opioid but possesses milder withdrawal symptoms. The use of this alkaloid as the source of an analgesic candidate has been proven through comprehensive preclinical and clinical studies. The present data have shown that mitragynine is able to bind to opioid receptors, particularly MOR, to exhibit the analgesic effect. Moreover, the chemical and pharmacological aspects of mitragynine and its diastereomers, speciogynine, speciociliatine, and mitraciliatine, are discussed. It is interesting to know how the difference in stereochemical configuration could lead to the difference in the bioactivity of the respective compounds. Hence, in this review, the updated pharmacological and toxicological properties of mitragynine and its diastereomers are discussed to render a comprehensive understanding of the pharmacological properties of mitragynine and its diastereomers based on their structure-activity relationship study.
Collapse
Affiliation(s)
- Thiruventhan Karunakaran
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Kok Zhuo Ngew
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Vivien Yi Mian Jong
- Centre of Applied Science Studies, Universiti Teknologi MARA, Kuching, Malaysia
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
21
|
In Silico Screening of Potential Phytocompounds from Several Herbs against SARS-CoV-2 Indian Delta Variant B.1.617.2 to Inhibit the Spike Glycoprotein Trimer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In October 2020, the SARS-CoV-2 B.1.617 lineage was discovered in India. It has since become a prominent variant in several Indian regions and 156 countries, including the United States of America. The lineage B.1.617.2 is termed the delta variant, harboring diverse spike mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD), which may heighten its immune evasion potentiality and cause it to be more transmissible than other variants. As a result, it has sparked substantial scientific investigation into the development of effective vaccinations and anti-viral drugs. Several efforts have been made to examine ancient medicinal herbs known for their health benefits and immune-boosting action against SARS-CoV-2, including repurposing existing FDA-approved anti-viral drugs. No efficient anti-viral drugs are available against the SARS-CoV-2 Indian delta variant B.1.617.2. In this study, efforts were made to shed light on the potential of 603 phytocompounds from 22 plant species to inhibit the Indian delta variant B.1.617.2. We also compared these compounds with the standard drug ceftriaxone, which was already suggested as a beneficial drug in COVID-19 treatment; these compounds were compared with other FDA-approved drugs: remdesivir, chloroquine, hydroxy-chloroquine, lopinavir, and ritonavir. From the analysis, the identified phytocompounds acteoside (−7.3 kcal/mol) and verbascoside (−7.1 kcal/mol), from the plants Clerodendrum serratum and Houttuynia cordata, evidenced a strong inhibitory effect against the mutated NTD (MT-NTD). In addition, the phytocompounds kanzonol V (−6.8 kcal/mol), progeldanamycin (−6.4 kcal/mol), and rhodoxanthin (−7.5 kcal/mol), from the plant Houttuynia cordata, manifested significant prohibition against RBD. Nevertheless, the standard drug, ceftriaxone, signals less inhibitory effect against MT-NTD and RBD with binding affinities of −6.3 kcal/mol and −6.5 kcal/mol, respectively. In this study, we also emphasized the pharmacological properties of the plants, which contain the screened phytocompounds. Our research could be used as a lead for future drug design to develop anti-viral drugs, as well as for preening the Siddha formulation to control the Indian delta variant B.1.617.2 and other future SARS-CoV-2 variants.
Collapse
|
22
|
Mitragyna speciosa Korth Leaves Supplementation on Feed Utilization, Rumen Fermentation Efficiency, Microbial Population, and Methane Production In Vitro. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The objective of the research was to evaluate the different levels of Mitragyna speciosa Korth leaves powder (MSLP) added to rations with 60:40 or 40:60 roughage to a concentrate (R:C ratio) on in vitro nutrient digestibility, rumen fermentation characteristics, microbial population, and methane (CH4) production. The treatments were arranged according to a 2 × 8 factorial arrangement in a completely randomized design. The two factors contain the R:C ratio (60:40 and 40:60) and the levels of MSLP addition (0, 1, 2, 3, 4, 5, 6, and 7% of the total substrate). There was no interaction between the R:C ratio and MSLP supplementation on gas production kinetics, ammonia nitrogen (NH3-N), and microbial populations. The gas production rate constant for the insoluble fraction (c) was increased by the R:C ratio at (40:60), whilst there was no difference obtained among treatments for cumulative gas production, whilst the gas production rate constant for the insoluble fraction (c) was increased by the R:C ratio at 40:60. The concentration of NH3-N was influenced by the R:C ratio and MSLP addition both at 4 and 8 h after incubation. In vitro dry matter degradability (IVDMD) and organic matter degradability (IVOMD) were significantly improved by the R:C ratio and supplementation of MSLP at 12 h. Increasing the R:C ratio and MSLP concentrations increased total volatile fatty acid (VFA) and propionic acid (C3) concentrations while decreasing acetic acid (C2) and butyric acid (C4) concentrations; thus, the C2:C3 ratio was reduced. MSLP addition reduced protozoa and methanogen populations (p < 0.05). The calculated CH4 production was decreased (p < 0.05) by the R:C ratios at 40:60 and supplementation of MSLP. Finally, the addition of MSLP as a phytonutrient may improve nutrient degradability and rumen fermentation properties while decreasing protozoa, methanogen population, and CH4 production.
Collapse
|
23
|
Khunnawutmanotham N, Chimnoi N, Nangkoed P, Hasakunpaisarn A, Wiwattanapaisarn W, Techasakul S. Facile Extraction of Three Main Indole Alkaloids from
Mitragyna speciosa
by Using Hot Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nisachon Khunnawutmanotham
- Laboratory of Organic Synthesis Chulabhorn Research Institute 54 Kamphaeng Phet6, Talat Bang Khen Lak Si, Bangkok 10210 Thailand
| | - Nitirat Chimnoi
- Laboratory of Natural Products Chulabhorn Research Institute 54 Kamphaeng Phet6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand
| | - Phonchanok Nangkoed
- Laboratory of Organic Synthesis Chulabhorn Research Institute 54 Kamphaeng Phet6, Talat Bang Khen Lak Si, Bangkok 10210 Thailand
| | - Anuch Hasakunpaisarn
- Office of Police Forensic Science Royal Thai PoliceHenry Dunant Road, Patumwan Bangkok 10330 Thailand
| | - Waraporn Wiwattanapaisarn
- Office of Police Forensic Science Royal Thai PoliceHenry Dunant Road, Patumwan Bangkok 10330 Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis Chulabhorn Research Institute 54 Kamphaeng Phet6, Talat Bang Khen Lak Si, Bangkok 10210 Thailand
| |
Collapse
|