1
|
Yan Z, Chu D, Yang Z, Pan S, Zhang M. Ca 3Al 2B 8O 18: borate with a graphene-like layer featuring two types of topological six-membered rings induced by [AlO 4] units. Chem Commun (Camb) 2024; 60:15047-15050. [PMID: 39610371 DOI: 10.1039/d4cc05571c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
A novel borate Ca3Al2B8O18, with two types of topological six-membered rings (6-MRs) in its graphene-like layer, was successfully fabricated by introducing [AlO4] tetrahedra. The 6-MRs [B5AlO17] in Ca3Al2B8O18 can be identified as unique ones, and Ca3Al2B8O18 exhibits a new fundamental building block [B8O19] greatly enriching the structural diversity of B-O configurations.
Collapse
Affiliation(s)
- Ziting Yan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu L, Pan CY, He Y, Zhong LJ, Beckett MA. Co (II)-doped hybrid Zn (II) tetraborate complexes, [Zn xCo (1-x)(1,3-dap)B 4O 7] (1,3-dap = 1,3-diaminopropane): BET analysis and N 2/H 2O/D 2O adsorption studies. Dalton Trans 2024; 53:4637-4642. [PMID: 38354056 DOI: 10.1039/d4dt00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A series of mono/bimetallic isostructural hybrid tetraborates of the general formula [ZnxCo(1-x)(1,3-dap)B4O7] has been prepared using a solvothermal method. Their adsorption/desorption curves for H2O and D2O demonstrate that these materials have a stronger affinity for H2O than for D2O and enrich the D2O content of D2O/H2O mixtures.
Collapse
Affiliation(s)
- Lei Liu
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, P.R. China.
| | - Chun-Yang Pan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, P.R. China.
| | - Yong He
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, P.R. China.
| | - Li-Juan Zhong
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, P.R. China.
| | - Michael A Beckett
- School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| |
Collapse
|
3
|
Beckett MA, Horton PN, Hursthouse MB, Timmis JL. Synthesis and Thermal Studies of Two Phosphonium Tetrahydroxidohexaoxidopentaborate(1-) Salts: Single-Crystal XRD Characterization of [ iPrPPh 3][B 5O 6(OH) 4]·3.5H 2O and [MePPh 3][B 5O 6(OH) 4]·B(OH) 3·0.5H 2O. Molecules 2023; 28:6867. [PMID: 37836710 PMCID: PMC10574587 DOI: 10.3390/molecules28196867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Two substituted phosphonium tetrahydoxidohexaoxidopentaborate(1-) salts, [iPrPPh3][B5O6(OH)4]·3.5H2O (1) and [MePPh3][B5O6(OH)4]·B(OH)3·0.5H2O (2), were prepared by templated self-assembly processes with good yields by crystallization from basic methanolic aqueous solutions primed with B(OH)3 and the appropriate phosphonium cation. Salts 1 and 2 were characterized by spectroscopic (NMR and IR) and thermal (TGA/DSC) analysis. Salts 1 and 2 were thermally decomposed in air at 800 °C to glassy solids via the anhydrous phosphonium polyborates that are formed at lower temperatures (<300 °C). BET analysis of the anhydrous and pyrolysed materials indicated they were non-porous with surface areas of 0.2-2.75 m2/g. Rhe recrystallization of 1 and 2 from aqueous solution afforded crystals suitable for single-crystal XRD analyses. The structure of 1 comprises alternating cationic/anionic layers with the H2O/pentaborate(1-) planes held together by H-bonds. The cationic planes have offset face-to-face (off) and vertex-to-face (vf) aromatic ring interactions with the iPr groups oriented towards the pentaborate(1-)/H2O layers. The anionic lattice in 2 is expanded by the inclusion of B(OH)3 molecules to accommodate the large cations; this results in the formation of a stacked pentaborate(1-)/B(OH)3 structure with channels occupied by the cations. The cations within the channels have vf, ef (edge-to-face), and off phenyl embraces. Both H-bonding and phenyl embrace interactions are important in stabilizing these two solid-state structures.
Collapse
Affiliation(s)
| | - Peter N. Horton
- Chemistry Department, University of Southampton, Southampton SO17 1BJ, UK
| | | | - James L. Timmis
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| |
Collapse
|
4
|
Li JJ, Chen WF, Lan YZ, Cheng JW. Recent Progress in Crystalline Borates with Edge-Sharing BO 4 Tetrahedra. Molecules 2023; 28:5068. [PMID: 37446729 DOI: 10.3390/molecules28135068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Crystalline borates have received great attention due to their various structures and wide applications. For a long time, the corner-sharing B-O unit is considered a basic rule in borate structural chemistry. The Dy4B6O15 synthesized under high-pressure is the first oxoborate with edge-sharing [BO4] tetrahedra, while the KZnB3O6 is the first ambient pressure borate with the edge-sharing [BO4] tetrahedra. The edge-sharing connection modes greatly enrich the structural chemistry of borates and are expected to expand new applications in the future. In this review, we summarize the recent progress in crystalline borates with edge-sharing [BO4] tetrahedra. We discuss the synthesis, fundamental building blocks, structural features, and possible applications of these edge-sharing borates. Finally, we also discuss the future perspectives in this field.
Collapse
Affiliation(s)
- Jing-Jing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Wei-Feng Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - You-Zhao Lan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jian-Wen Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Beckett MA, Coles SJ, Horton PN, Rixon TA. Structural (XRD) Characterization and an Analysis of H-Bonding Motifs in Some Tetrahydroxidohexaoxidopentaborate(1-) Salts of N-Substituted Guanidinium Cations. Molecules 2023; 28:molecules28073273. [PMID: 37050036 PMCID: PMC10096507 DOI: 10.3390/molecules28073273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
The synthesis and characterization of six new substituted guanidium tetrahydroxidohexaoxidopentaborate(1-) salts are reported: [C(NH2)2(NHMe)][B5O6(OH)4]·H2O (1), [C(NH2)2(NH{NH2})][B5O6(OH)4] (2), [C(NH2)2(NMe2)][B5O6(OH)4] (3), [C(NH2)(NMe2)2][B5O6(OH)4] (4), [C(NHMe)(NMe2)2][B5O6(OH)4]·B(OH)3 (5), and [TBDH][B5O6(OH)4] (6) (TBD = 1,5,7-triazabicyclo [4.4.0]dec-5-ene). Compounds 1-6 were prepared as crystalline salts from basic aqueous solution via self-assembly processes from B(OH)3 and the appropriate substituted cation. Compounds 1-6 were characterized by spectroscopic (NMR and IR) and by single-crystal XRD studies. A thermal (TGA) analysis on compounds 1-3 and 6 demonstrated that they thermally decomposed via a multistage process to B2O3 at >650 °C. The low temperature stage (<250 °C) was endothermic and corresponded to a loss of H2O. Reactant stoichiometry, solid-state packing, and H-bonding interactions are all important in assembling these structures. An analysis of H-bonding motifs in known unsubstituted guanidinium salts [C(NH2)3]2[B4O5(OH)4]·2H2O, [C(NH2)3][B5O6(OH)4]·H2O, and [C(NH2)3]3[B9O12(OH)6] and in compounds 1-6 revealed that two important H-bonding R22(8) motifs competed to stabilize the observed structures. The guanidinium cation formed charge-assisted pincer cation-anion H-bonded rings as a major motif in [C(NH2)3]2[B4O5(OH)4]·2H2O and [C(NH2)3]3[B9O12(OH)6], whereas the anion-anion ring motif was dominant in [C(NH2)3][B5O6(OH)4]·H2O and in compounds 1-6. This behaviour was consistent with the stoichiometry of the salt and packing effects also strongly influencing their solid-state structures.
Collapse
Affiliation(s)
- Michael A Beckett
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Simon J Coles
- Chemistry Department, University of Southampton, Southampton SO17 1BJ, UK
| | - Peter N Horton
- Chemistry Department, University of Southampton, Southampton SO17 1BJ, UK
| | - Thomas A Rixon
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
6
|
Altahan MA, Beckett MA, Coles SJ, Horton PN, Jones CL. Synthesis and characterization of a tertiary amine:boric acid (1:1) co-crystal and a neutral zwitterionic diamine pentaboron adduct. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Sun J, Lu X, Mutailipu M, Pan S. Identical in Formula but Not Isotypic in Configuration: Discovery of a New Highly Polymerized [B 12O 24] Cluster in Cs 3AlB 6O 12. Inorg Chem 2021; 60:15131-15135. [PMID: 34591454 DOI: 10.1021/acs.inorgchem.1c02593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The discovery of new borates with unique structures has always been a growing part of solid-state chemistry, especially for polyborates. Herein, a new aluminoborate, Cs3AlB6O12, has been discovered by a high-temperature solution in a vacuum system. The highly polymerized [B12O24] cluster, unlike the annular configuration in previously reported polyborates, is found in Cs3AlB6O12 for the first time. The different linkage reflected by the local symmetry in cluster makes these borates not isotypic, although the formula of [B12O24] is identical. Experimental measurement performed on Cs3AlB6O12 powder reveals the deep-ultraviolet transparent spectral feature.
Collapse
Affiliation(s)
- Jun Sun
- CAS Key Laboratory of Functional Materials and Devices for Special Environments and Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoquan Lu
- China Building Material Test & Certification Group Company, Ltd., Beijing 100024, China
| | - Miriding Mutailipu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments and Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments and Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Oxidoborates Templated by Cationic Nickel(II) Complexes and Self-Assembled from B(OH)3. INORGANICS 2021. [DOI: 10.3390/inorganics9090068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Several oxidoborates, self-assembled from B(OH)3 and templated by cationic Ni(II) coordination compounds, were synthesized by crystallization from aqueous solution. These include the ionic compounds trans-[Ni(NH3)4(H2O)2][B4O5(OH)4].H2O (1), s-[Ni(dien)2][B5O6(OH)4]2 (dien = N-(2-aminoethyl)-1,2-ethanediamine (2), trans-[Ni(dmen)2(H2O)2] [B5O6(OH)4]2.2H2O (dmen = N,N-dimethyl-1,2-diaminoethane) (3), [Ni(HEen)2][B5O6(OH)4]2 (HEen = N-(2-hydroxyethyl)-1,2-diaminoethane) (4), [Ni(AEN)][B5O6(OH)4].H2O (AEN = 1-(3-azapropyl) -2,4-dimethyl-1,5,8-triazaocta-2,4-dienato(1-)) (5), trans-[Ni(dach)2(H2O)2][Ni(dach)2] [B7O9(OH)5]2.4H2O (dach = 1,2-diaminocyclohexane) (6), and the neutral species trans-[Ni(en)(H2O)2{B6O7(OH)6}].H2O (7) (en = 1,2-diaminoethane), and [Ni(dmen)(H2O){B6O7(OH)6}].5H2O (8). Compounds 1–8 were characterized by single-crystal XRD studies and by IR spectroscopy and 2, 4–7 were also characterized by thermal (TGA/DSC) methods and powder XDR studies. The solid-state structures of all compounds show extensive stabilizing H-bond interactions, important for their formation, and also display a range of gross structural features: 1 has an insular tetraborate(2-) anion, 2–5 have insular pentaborate(1-) anions, 6 has an insular heptaborate(2-) anion (‘O+’ isomer), whilst 7 and 8 have hexaborate(2-) anions directly coordinated to their Ni(II) centers, as bidentate or tridentate ligands, respectively. The Ni(II) centers are either octahedral (1–4, 7, 8) or square-planar (5), and compound 6 has both octahedral and square-planar metal geometries present within the structure as a double salt. Magnetic susceptibility measurements were undertaken on all compounds.
Collapse
|