1
|
Moine A, Pugliese M, Monchiero M, Gribaudo I, Gullino ML, Pagliarani C, Gambino G. Effects of fungicide application on physiological and molecular responses of grapevine (Vitis vinifera L.): a comparison between copper and sulfur fungicides applied alone and in combination with novel fungicides. PEST MANAGEMENT SCIENCE 2023; 79:4569-4588. [PMID: 37434047 DOI: 10.1002/ps.7660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/12/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Chemical products against fungi and oomycetes pose serious environmental issues. In the last decade, the use of less impacting active ingredients was encouraged to reduce chemical inputs in viticulture. In this study, the effect of different antifungal compounds on grapevine agronomic, physiological, and molecular responses in the vineyard was evaluated in addition to protection against powdery and downy mildews. RESULTS In 2 years and in two Vitis vinifera cultivars (Nebbiolo and Arneis), a conventional crop protection approach, based on traditional fungicides (sulfur and copper), was compared to combined strategies. A well-known resistance inducer (potassium phosphonate), Bacillus pumilus strain QST 2808 and calcium oxide, both active ingredients whose biological interaction with grapevine is poorly characterized, were applied in the combined strategies in association with chemical fungicides. Despite a genotype effect occurred, all treatments optimally controlled powdery and downy mildews, with minimal variations in physiological and molecular responses. Gas exchange, chlorophyll content and photosystem II efficiency increased in treated plants at the end of season, along with a slight improvement in the agronomic performances, and an activation of molecular defense processes linked to stilbene and jasmonate pathways. CONCLUSION The disease control strategies based on potassium phosphonate, Bacillus pumilus strain QST 2808 or calcium oxide combined with traditional chemical compounds did not cause severe limitations in plant ecophysiology, grape quality, and productive yields. The combination of potassium phosphonate and calcium oxide with traditional fungicides can represent a valuable strategy for reducing copper and sulfur inputs in the vineyards, including those organically managed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Massimo Pugliese
- Centre of competence for the innovation in the agro-environmental sector (Agroinnova), Grugliasco, Italy
| | | | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Maria Lodovica Gullino
- Centre of competence for the innovation in the agro-environmental sector (Agroinnova), Grugliasco, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| |
Collapse
|
2
|
Gomes T, Pereira JA, Moya-Laraño J, Poveda J, Lino-Neto T, Baptista P. Deciphering plant health status: The link between secondary metabolites, fungal community and disease incidence in olive tree. FRONTIERS IN PLANT SCIENCE 2023; 14:1048762. [PMID: 37035041 PMCID: PMC10073708 DOI: 10.3389/fpls.2023.1048762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Plant-associated microorganisms are increasingly recognized to play key roles in host health. Among several strategies, associated microorganisms can promote the production of specific metabolites by their hosts. However, there is still a huge gap in the understanding of such mechanisms in plant-microorganism interaction. Here, we want to determine whether different levels of olive leaf spot (OLS) disease incidence were related to differences in the composition of fungal and secondary metabolites (i.e. phenolic and volatile compounds) in leaves from olive tree cultivars with contrasting OLS susceptibilities (ranging from tolerant to highly susceptible). Accordingly, leaves with three levels of OLS incidence from both cultivars were used to assess epiphytic and endophytic fungal communities, by barcoding of cultivable isolates, as well as to evaluate leaf phenolic and volatile composition. Fungal and metabolite compositions variations were detected according to the level of disease incidence. Changes were particularly noticed for OLS-tolerant cultivars, opposing to OLS-susceptible cultivars, suggesting that disease development is linked, not only to leaf fungal and metabolite composition, but also to host genotype. A set of metabolites/fungi that can act as predictive biomarkers of plant tolerance/susceptibility to OLS disease were identified. The metabolites α-farnesene and p-cymene, and the fungi Fusarium sp. and Alternaria sp. were more related to disease incidence, while Pyronema domesticum was related to the absence of disease symptoms. Cultivar susceptibility to OLS disease is then suggested to be driven by fungi, volatile and phenolic host leaves composition, and above all to plant-fungus interaction. A deeper understanding of these complex interactions may unravel plant defensive responses.
Collapse
Affiliation(s)
- Teresa Gomes
- Centro De Investigação De Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia Em Regiões De Montanha (SusTEC), Instituto Politécnico De Bragança, Bragança, Portugal
| | - José Alberto Pereira
- Centro De Investigação De Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia Em Regiões De Montanha (SusTEC), Instituto Politécnico De Bragança, Bragança, Portugal
| | - Jordi Moya-Laraño
- Functional and Evolutionary Ecology, Estación Experimental De Zonas Áridas - CSIC, Almería, Spain
| | - Jorge Poveda
- Centro De Investigação De Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia Em Regiões De Montanha (SusTEC), Instituto Politécnico De Bragança, Bragança, Portugal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública De Navarra, Pamplona, Spain
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Paula Baptista
- Centro De Investigação De Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia Em Regiões De Montanha (SusTEC), Instituto Politécnico De Bragança, Bragança, Portugal
| |
Collapse
|
3
|
Lemaitre-Guillier C, Chartier A, Dufresne C, Douillet A, Cluzet S, Valls J, Aveline N, Daire X, Adrian M. Elicitor-Induced VOC Emission by Grapevine Leaves: Characterisation in the Vineyard. Molecules 2022; 27:6028. [PMID: 36144763 PMCID: PMC9501231 DOI: 10.3390/molecules27186028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
The present study is aimed at determining whether leaf volatile organic compounds (VOCs) are good markers of the grapevine response to defence elicitors in the field. It was carried out in two distinct French vineyards (Burgundy and Bordeaux) over 3 years. The commercial elicitor Bastid® (Syngenta, Saint-Sauveur, France) (COS-OGA) was first used to optimise the VOCs' capture in the field; by bagging stems together with a stir bar sorptive extraction (SBSE) sensor. Three elicitors (Bastid®, copper sulphate and methyl jasmonate) were assessed at three phenological stages of the grapevines by monitoring stilbene phytoalexins and VOCs. Stilbene production was low and variable between treatments and phenological stages. VOCs-particularly terpenes-were induced by all elicitors. However, the response profiles depended on the type of elicitor, the phenological stage and the vineyard, and no sole common VOC was found. The levels of VOC emissions discriminated between weak (Bastid® and copper sulphate) and strong (methyl jasmonate) inducers. Ocimene isomers were constitutively present in the overall blends of the vineyards and increased by the elicitors' treatments, whilst other VOCs were newly released throughout the growing seasons. Nonetheless, the plant development and climate factors undoubtedly influenced the release and profiles of the leaf VOCs.
Collapse
Affiliation(s)
| | - Agnès Chartier
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311, Université d’Orléans, CEDEX 2, 45067 Orléans, France
| | - Christelle Dufresne
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311, Université d’Orléans, CEDEX 2, 45067 Orléans, France
| | - Antonin Douillet
- Institut Français de la Vigne et du Vin (IFV), 33290 Blanquefort, France
| | - Stéphanie Cluzet
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, Equipe Molécules d’Intérêt Biologique (MIB), ISVV, 33140 Villenave d’Ornon, France
| | - Josep Valls
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, Equipe Molécules d’Intérêt Biologique (MIB), ISVV, 33140 Villenave d’Ornon, France
| | - Nicolas Aveline
- Institut Français de la Vigne et du Vin (IFV), 33290 Blanquefort, France
| | - Xavier Daire
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | - Marielle Adrian
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
4
|
Abstract
Elicitors as alternatives to agrochemicals are widely used as a sustainable farming practice. The use of elicitors in viticulture to control disease and improve phenolic compounds is widely recognized in this field. Concurrently, they also affect other secondary metabolites, such as aroma compounds. Grape and wine aroma compounds are an important quality factor that reflects nutritional information and influences consumer preference. However, the effects of elicitors on aroma compounds are diverse, as different grape varieties respond differently to treatments. Among the numerous commercialized elicitors, some have proven very effective in improving the quality of grapes and the resulting wines. This review summarizes some of the elicitors commonly used in grapevines for protection against biotic and abiotic stresses and their impact on the quality of volatile compounds. The work is intended to serve as a reference for growers for the sustainable development of high-quality grapes.
Collapse
|
5
|
Sakurai N. Recent applications of metabolomics in plant breeding. BREEDING SCIENCE 2022; 72:56-65. [PMID: 36045891 PMCID: PMC8987846 DOI: 10.1270/jsbbs.21065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/19/2021] [Indexed: 05/27/2023]
Abstract
Metabolites play a central role in maintaining organismal life and in defining crop phenotypes, such as nutritional value, fragrance, color, and stress resistance. Among the 'omes' in biology, the metabolome is the closest to the phenotype. Consequently, metabolomics has been applied to crop improvement as method for monitoring changes in chemical compositions, clarifying the mechanisms underlying cellular functions, discovering markers and diagnostics, and phenotyping for mQTL, mGWAS, and metabolite-genome predictions. In this review, 359 reports of the most recent applications of metabolomics to plant breeding-related studies were examined. In addition to the major crops, more than 160 other crops including rare medicinal plants were considered. One bottleneck associated with using metabolomics is the wide array of instruments that are used to obtain data and the ambiguity associated with metabolite identification and quantification. To further the application of metabolomics to plant breeding, the features and perspectives of the technology are discussed.
Collapse
Affiliation(s)
- Nozomu Sakurai
- Bioinformation and DDBJ Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
6
|
Lazazzara V, Avesani S, Robatscher P, Oberhuber M, Pertot I, Schuhmacher R, Perazzolli M. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:529-554. [PMID: 34409450 DOI: 10.1093/jxb/erab367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of volatile organic compounds (VOCs) in plants is triggered in response to external stimuli, and these compounds can migrate to distal tissues and neighbouring receivers. Although grapevine VOCs responsible for wine aroma and plant-insect communications are well characterized, functional properties of VOCs produced in response to phytopathogens, beneficial microorganisms, resistance inducers, and abiotic factors have been less studied. In this review, we focused on the emission patterns and potential biological functions of VOCs produced by grapevines in response to stimuli. Specific grapevine VOCs are emitted in response to the exogenous stimulus, suggesting their precise involvement in plant defence response. VOCs with inhibitory activities against pathogens and responsible for plant resistance induction are reported, and some of them can also be used as biomarkers of grapevine resistance. Likewise, VOCs produced in response to beneficial microorganisms and environmental factors are possible mediators of grapevine-microbe communications and abiotic stress tolerance. Although further functional studies may improve our knowledge, the existing literature suggests that VOCs have an underestimated potential application as pathogen inhibitors, resistance inducers against biotic or abiotic stresses, signalling molecules, membrane stabilizers, and modulators of reactive oxygen species. VOC patterns could also be used to screen for resistant traits or to monitor the plant physiological status.
Collapse
Affiliation(s)
- Valentina Lazazzara
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Sara Avesani
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Michael Oberhuber
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
7
|
Pane C, Galieni A, Riefolo C, Nicastro N, Castrignanò A. Hyperspectral Reflectance Response of Wild Rocket ( Diplotaxis tenuifolia) Baby-Leaf to Bio-Based Disease Resistance Inducers Using a Linear Mixed Effect Model. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122575. [PMID: 34961046 PMCID: PMC8707134 DOI: 10.3390/plants10122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Baby leaf wild rocket cropping systems feeding the high convenience salad chain are prone to a set of disease agents that require management measures compatible with the sustainability-own features of the ready-to-eat food segment. In this light, bio-based disease resistance inducers able to elicit the plant's defense mechanism(s) against a wide-spectrum of pathogens are proposed as safe and effective remedies as alternatives to synthetic fungicides, to be, however, implemented under practical field applications. Hyperspectral-based proximal sensing was applied here to detect plant reflectance response to treatment of wild rocket beds with Trichoderma atroviride strain TA35, laminarin-based Vacciplant®, and Saccharomyces cerevisiae strain LAS117 cell wall extract-based Romeo®, compared to a local standard approach including synthetic fungicides (i.e., cyprodinil, fludioxonil, mandipropamid, and metalaxyl-m) and a not-treated control. Variability of the spectral information acquired in VIS-NIR-SWIR regions per treatment was explained by three principal components associated with foliar absorption of water, structural characteristics of the vegetation, and the ecophysiological plant status. Therefore, the following model-based statistical approach returned the interpretation of the inducers' performances at field scale consistent with their putative biological effects. The study stated that compost and laminarin-based treatments were the highest crop impacting ones, resulting in enhanced water intake and in stress-related pigment adjustment, respectively. Whereas plants under the conventional chemical management proved to be in better vigor and health status than the untreated control.
Collapse
Affiliation(s)
- Catello Pane
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy;
| | - Angelica Galieni
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Via Salaria 1, 63030 Monsampolo del Tronto, Italy;
| | - Carmela Riefolo
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, Via Celso Ulpiani 5, 70125 Bari, Italy;
| | - Nicola Nicastro
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy;
| | - Annamaria Castrignanò
- Department of Engineering and Geology (InGeo), “Gabriele D’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy;
| |
Collapse
|