1
|
Li L, Zhong S, Ye J, Hu S, Hu Z. Effect of Danhong injection on heart failure in rats evaluated by metabolomics. Front Med (Lausanne) 2023; 10:1259182. [PMID: 37859859 PMCID: PMC10582331 DOI: 10.3389/fmed.2023.1259182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Background Heart failure (HF) is characterized by reduced ventricular filling or ejection function due to organic or non-organic cardiovascular diseases. Danhong injection (DHI) is a medicinal material used clinically to treat HF for many years in China. Although prior research has shown that Danhong injection can improve cardiac function and structure, the biological mechanism has yet to be determined. Methods Serum metabolic analysis was conducted via ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UHPLC-QE/MS) to explore underlying protective mechanisms of DHI in the transverse aortic constriction (TAC)-induced heart failure. Multivariate statistical techniques were used in the research, such as unsupervised principal component analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA). MetaboAnalyst and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to pinpoint pertinent metabolic pathways. Results After DHI treatment, cardiac morphology and function as well as the metabolism in model rats were improved. We identified 17 differential metabolites and six metabolic pathways. Two biomarkers, PC(18:3(6Z,9Z,12Z)/24:0) and L-Phenylalanine, were identified for the first time as strong indicators for the significant effect of DHI. Conclusion This study revealed that DHI could regulate potential biomarkers and correlated metabolic pathway, which highlighted therapeutic potential of DHI in managing HF.
Collapse
Affiliation(s)
- Lin Li
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, Hunan, China
| | - Senjie Zhong
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiahao Ye
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyuan Hu
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhixi Hu
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Silva JC, Pereira Silva PS, Ramos Silva M, Fantechi E, Chelazzi L, Ciattini S, Eusébio MES, Rosado MTS. Amorphous Solid Forms of Ranolazine and Tryptophan and Their Relaxation to Metastable Polymorphs. CRYSTAL GROWTH & DESIGN 2023; 23:6679-6691. [PMID: 37692331 PMCID: PMC10486308 DOI: 10.1021/acs.cgd.3c00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Different methods were explored for the amorphization of ranolazine, a sparingly soluble anti-anginal drug, such as mechanochemistry, quench-cooling, and solvent evaporation from solutions. Amorphous phases, with Tg values lower than room temperature, were obtained by cryo-milling and quench-cooling. New forms of ranolazine, named II and III, were identified from the relaxation of the ranolazine amorphous phase produced by cryo-milling, which takes place within several hours after grinding. At room temperature, these metastable polymorphs relax to the lower energy polymorph I, whose crystal structure was solved in this work for the first time. A binary co-amorphous mixture of ranolazine and tryptophan was produced, with three important advantages: higher glass transition temperature, increased kinetic stability preventing relaxation of the amorphous to crystalline phases for at least two months, and improved aqueous solubility. Concomitantly, the thermal behavior of amorphous tryptophan obtained by cryo-milling was studied by DSC. Depending on experimental conditions, it was possible to observe relaxation directly to the lower energy form or by an intermediate metastable crystalline phase and the serendipitous production of the neutral form of this amino acid in the pure solid phase.
Collapse
Affiliation(s)
- Joana
F. C. Silva
- CQC-IMS,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Pedro S. Pereira Silva
- CFisUC,
Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Rua Larga, 3000-370 Coimbra, Portugal
| | - Manuela Ramos Silva
- CFisUC,
Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Rua Larga, 3000-370 Coimbra, Portugal
| | - Elvira Fantechi
- Centro
di Cristallografia Strutturale (CRIST), Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019 Firenze, Italy
| | - Laura Chelazzi
- Centro
di Cristallografia Strutturale (CRIST), Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019 Firenze, Italy
| | - Samuele Ciattini
- Centro
di Cristallografia Strutturale (CRIST), Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019 Firenze, Italy
| | - M. Ermelinda S. Eusébio
- CQC-IMS,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Mário T. S. Rosado
- CQC-IMS,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Štejfa V, Pokorný V, Lieberzeitová E, Havlín J, Fulem M, Růžička K. Heat Capacities of N-Acetyl Amides of Glycine, L-Alanine, L-Valine, L-Isoleucine, and L-Leucine. Molecules 2023; 28:5440. [PMID: 37513312 PMCID: PMC10385853 DOI: 10.3390/molecules28145440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
As a follow-up to our effort to establish reliable thermodynamic data for amino acids, the heat capacity and phase behavior are reported for N-acetyl glycine amide (CAS RN: 2620-63-5), N-acetyl-L-alanine amide (CAS RN: 15962-47-7), N-acetyl-L-valine amide (CAS RN: 37933-88-3), N-acetyl-L-isoleucine amide (CAS RN: 56711-06-9), and N-acetyl-L-leucine amide (CAS RN: 28529-34-2). Prior to heat capacity measurement, thermogravimetric analysis and X-ray powder diffraction were performed to determine decomposition temperatures and initial crystal structures, respectively. The crystal heat capacities of the five N-acetyl amino acid amides were measured by Tian-Calvet calorimetry in the temperature interval (266-350 K), by power compensation DSC in the temperature interval (216-471 K), and by relaxation (heat-pulse) calorimetry in the temperature interval (2-268 K). As a result, reference heat capacities and thermodynamic functions for the crystalline phase from 0 K up to 470 K were developed.
Collapse
Affiliation(s)
- Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Václav Pokorný
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague, Czech Republic
| | - Eliška Lieberzeitová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Jakub Havlín
- Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Květoslav Růžička
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| |
Collapse
|
4
|
Gurbatov SO, Puzikov V, Storozhenko D, Modin E, Mitsai E, Cherepakhin A, Shevlyagin A, Gerasimenko AV, Kulinich SA, Kuchmizhak AA. Multigram-Scale Production of Hybrid Au-Si Nanomaterial by Laser Ablation in Liquid (LAL) for Temperature-Feedback Optical Nanosensing, Light-to-Heat Conversion, and Anticounterfeit Labeling. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3336-3347. [PMID: 36602431 DOI: 10.1021/acsami.2c18999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent progress in hybrid optical nanomaterials composed of dissimilar constituents permitted an improvement in the performance and functionality of novel devices developed for optoelectronics, catalysis, medical diagnostics, and sensing. However, the rational combination of contrasting materials such as noble metals and semiconductors within individual hybrid nanostructures via a ready-to-use and lithography-free fabrication approach is still a challenge. Here, we report on a two-step synthesis of hybrid Au-Si microspheres generated by laser ablation of silicon in isopropanol followed by laser irradiation of the produced Si nanoparticles in the presence of HAuCl4. Thermal reduction of [AuCl4]- species to a metallic gold phase, along with its subsequent mixing with silicon under laser irradiation, creates a nanostructured material with a unique composition and morphology, as revealed by electron microscopy, tomography, and elemental analysis. A combination of basic plasmonic and nanophotonic materials such as gold and silicon within a single microsphere allows for efficient light-to-heat conversion, as well as single-particle SERS sensing with temperature-feedback modality and expanded functionality. Moreover, the characteristic Raman signal and hot-electron-induced nonlinear photoluminescence coexisting within the novel Au-Si hybrids, as well as the commonly criticized randomness of the nanomaterials prepared by laser ablation in liquid, were proved to be useful for the realization of anticounterfeiting labels based on a physically unclonable function approach.
Collapse
Affiliation(s)
- Stanislav O Gurbatov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
- Far Eastern Federal University, Russky Island, Vladivostok690922, Russia
| | - Vladislav Puzikov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
| | - Dmitriy Storozhenko
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
| | - Evgeny Modin
- CIC NanoGUNE BRTA, Donostia-San Sebastian20018, Spain
| | - Eugeny Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
| | - Artem Cherepakhin
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
| | - Alexander Shevlyagin
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
| | | | - Sergei A Kulinich
- Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa259-1292, Japan
| | - Aleksandr A Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok690041, Russia
- Far Eastern Federal University, Russky Island, Vladivostok690922, Russia
| |
Collapse
|
5
|
Pokorný V, Štejfa V, Havlín J, Fulem M, Růžička K. Heat Capacities of L-Cysteine, L-Serine, L-Threonine, L-Lysine, and L-Methionine. Molecules 2023; 28:molecules28010451. [PMID: 36615652 PMCID: PMC9823850 DOI: 10.3390/molecules28010451] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
In an effort to establish reliable thermodynamic data for amino acids, heat capacity and phase behavior are reported for L-cysteine (CAS RN: 52-90-4), L-serine (CAS RN: 56-45-1), L-threonine (CAS RN: 72-19-5), L-lysine (CAS RN: 56-87-1), and L-methionine (CAS RN: 63-68-3). Prior to heat capacity measurements, initial crystal structures were identified by X-ray powder diffraction, followed by a thorough investigation of the polymorphic behavior using differential scanning calorimetry in the temperature range from 183 K to the decomposition temperature determined by thermogravimetric analysis. Crystal heat capacities of all five amino acids were measured by Tian-Calvet calorimetry in the temperature interval (262-358) K and by power compensation DSC in the temperature interval from 215 K to over 420 K. Experimental values of this work were compared and combined with the literature data obtained with adiabatic calorimetry. Low-temperature heat capacities of L-threonine and L-lysine, for which no or limited literature data was available, were measured using the relaxation (heat pulse) calorimetry. As a result, reference heat capacities and thermodynamic functions for the crystalline phase from near 0 K to over 420 K were developed.
Collapse
Affiliation(s)
- Václav Pokorný
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague, Czech Republic
| | - Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Jakub Havlín
- Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Květoslav Růžička
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
6
|
Aikawa S, Tanaka H, Ueda H, Maruyama M, Higaki K. Formation of a Stable Co-Amorphous System for a Brick Dust Molecule by Utilizing Sodium Taurocholate with High Glass Transition Temperature. Pharmaceutics 2022; 15:84. [PMID: 36678713 PMCID: PMC9864160 DOI: 10.3390/pharmaceutics15010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Brick dust molecules are usually poorly soluble in water and lipoidal components, making it difficult to formulate them in dosage forms that provide efficient pharmacological effects. A co-amorphous system is an effective strategy to resolve these issues. However, their glass transition temperatures (Tg) are relatively lower than those of polymeric amorphous solid dispersions, suggesting the instability of the co-amorphous system. This study aimed to formulate a stable co-amorphous system for brick dust molecules by utilizing sodium taurocholate (NaTC) with a higher Tg. A novel neuropeptide Y5 receptor antagonist (AntiY5R) and NaTC with Tg of 155 °C were used as the brick dust model and coformer, respectively. Ball milling formed a co-amorphous system for AntiY5R and NaTC (AntiY5R-NaTC) at various molar ratios. Deviation from the theoretical Tg value and peak shifts in Fourier-transform infrared spectroscopy indicated intermolecular interactions between AntiY5R and NaTC. AntiY5R-NaTC at equal molar ratios resulting in an 8.5-fold increase in AntiY5R solubility over its crystalline form. The co-amorphous system remained amorphous for 1 month at 25 °C and 40 °C. These results suggest that the co-amorphous system formed by utilizing NaTC as a coformer could stably maintain the amorphous state and enhance the solubility of brick dust molecules.
Collapse
Affiliation(s)
- Shohei Aikawa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Formulation Research Department, Formulation R&D Laboratory, Shionogi & Co., Ltd., Hyogo 660-0813, Japan
| | - Hironori Tanaka
- Formulation Research Department, Formulation R&D Laboratory, Shionogi & Co., Ltd., Hyogo 660-0813, Japan
| | - Hiroshi Ueda
- Bioanalytical, Analysis and Evaluation Laboratory, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
7
|
|