Daisylet BS, Raphael SJ, Kumar P, Rajan PP, Dasan A. Exploring the versatility of sulfur-containing heterocyclic metal complexes: Application in medical and prospects of visible-light-driven photocatalysis.
J Inorg Biochem 2024;
257:112603. [PMID:
38749081 DOI:
10.1016/j.jinorgbio.2024.112603]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
Numerous heterocyclic moieties serve as the foundational structure for clinically employed drugs, underscoring the significance of heterocycles in the innovation of pharmacologically active compounds. In the present investigation, a heterocyclic skeleton of thiophene-clubbed benzimidazole (tmb) was developed and utilized to synthesize seven novel series of metal (M(II) = Co, Ni, Cu, and Zn) complexes to explore diverse applications including pharmacological and photocatalytic performance. A sharp singlet peak appeared at 5.72 ppm (tmb) and 5.94 ppm for the Zn(II)-tmb complex corresponding to -CH2 protons, as evidenced by 1H NMR results, confirming the formation of targeted compounds. Antimicrobial assay and docking studies confirmed that the mixed metal complex; [Cu(tmb)2(1,10-phen)Cl2] possesses the highest activity and displayed significant biofilm inhibition, achieving 86.35 and 89.8% at concentrations of 1 and 0.020 mg/mL, respectively against E. coli. Furthermore, the photocatalytic activity was monitored by the degradation of methylene blue dye under direct sunlight and [Cu(tmb)2Cl2] exhibited a maximum degradation efficiency of 96.15% in 45 min. These findings could serve as inspiration for the development of benzimidazole-based metal complexes as effective anti-biofilm and photocatalytic agents.
Collapse