1
|
Wang Z, Tang X, Lv L, Qiao S, Chen M, Song H. HPTLC-Bioautography-MS-Guided Strategy for the Detection of Phthalides With Antimicrobial and Antioxidant Activities From Ligusticum chuanxiong Essential Oil. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 39805321 DOI: 10.1002/pca.3498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Antimicrobial resistance and free radical-mediated oxidative stress and inflammation involved in many pathological processes have become treatment challenges. One strategy is to search for antimicrobial and antioxidant ingredients from natural aromatic plants. This study established a rapid and high-throughput effect-component analysis method to screen active ingredients from Ligusticum chuanxiong essential oil (CXEO). OBJECTIVE The study aims to screen phthalides with antimicrobial and antioxidant activities from CXEO by high-performance thin-layer chromatography (HPTLC)-bioautography combined with HPLC-TOF/MS method. METHODS Antimicrobial activity was evaluated by disc diffusion and micro broth dilution methods. Antioxidant capacity was performed by DPPH scavenging test. Phthalides in CXEO were identified using HPLC-TOF/MS method. HPTLC-bioautography technique was established to screen phthalides of antifungal and antioxidant activities. RESULTS CXEO had significant inhibitory activity against Candida albicans, weak or undetected inhibitory activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. For tested strains of C. albicans, inhibition zone diameters ranged from 13 to 17 mm, and MICs were from 0.5 to 2 mg mL-1. CXEO also had strong antioxidant activity, IC50 value for scavenging DPPH free radicals was 1.014 ± 0.014 mg mL-1. Nine phthalides in CXEO were tentatively identified. Ligustilide and senkyunolide A were screened to have both antimicrobial activity against C. albicans and strong DPPH scavenging property. CONCLUSION HPTLC-bioautography-MS-guided strategy is very practical for high-throughput screening of antifungal and antioxidant phthalides from CXEO. In vitro experiments have shown that phthalides and CXEO have good biological activities, which may be used to the treatment of C. albicans infection or oxidative stress damage caused by various diseases. The therapeutic potential should be validated in vivo in the future.
Collapse
Affiliation(s)
- Zhijun Wang
- Department of Pharmacy, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaomeng Tang
- Department of Pharmacy, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Sicong Qiao
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Mengxin Chen
- Department of Pharmacy, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongjie Song
- Department of Pharmacy, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Amountzias V, Gikas E, Aligiannis N. HPTLC Combined with sHetCA and Multivariate Statistics for the Detection of Bioactive Compounds in Complex Mixtures. Molecules 2024; 29:6027. [PMID: 39770114 PMCID: PMC11679881 DOI: 10.3390/molecules29246027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
High-Performance Thin Layer Chromatography (HPTLC) is widely utilized in natural products research due to its simplicity, low cost, and short total analysis time, including data treatment. While bioautography can be used for rapid detection of bioactive compounds in extracts, the number of available bioautographic methods is limited mainly due to the high cost and difficulty in developing protocols that lead to accurate and reproducible results. For this reason, an alternative method for the detection of bioactive compounds in plant extracts prior to their isolation using HPTLC, combined with multivariate chemometrics, was previously explored by our lab. To evaluate this method and compare it to other chemometrics-based methods, an artificial mixture (ArtExtr) of 59 standard compounds was used as a case study. The ArtExtr was fractionated by FCPC and the inhibitory activity of all fractions against DPPH was evaluated, while their chemical profiles were recorded using HPTLC. Multivariate statistics and the heterocovariance approach (HetCA) were employed and compared, with the success rate in detecting the ArtExtr bioactive substances being 85.7% via sparse heterocovariance (sHetCA). HPTLC combined with sHetCA can serve as a valuable tool for the detection of bioactive compounds in complex mixtures when bioautography is not feasible.
Collapse
Affiliation(s)
- Vaios Amountzias
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Evagelos Gikas
- Department of Analytical Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| |
Collapse
|
3
|
Xu W, Shi D, Chen K, Popovich DG. TLC-bioautography-guided identification and assessment of the antibacterial compounds from Feijoa sellowiana. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39238128 DOI: 10.1002/pca.3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
INTRODUCTION A rapid procedure was developed for the targeted isolation and assessment of antibacterial compounds from plant-based materials. The effectiveness of this method was demonstrated using Feijoa sellowiana fruit peels. OBJECTIVE The objectives of this study are as follows: develop an efficient procedure utilizing direct thin-layer chromatography (TLC)-bioautography to facilitate the targeting, identification, and purification of antibacterial compounds from plant extracts and delineate a method based on TLC-bioautography to determine the minimum effective dose (MED), alongside a colorimetric broth microdilution aided by high-performance liquid chromatography (HPLC) for evaluating the isolated active compounds. METHODOLOGY Active compounds were targeted using TLC-bioautography against Staphylococcus aureus, and the identification was achieved through liquid chromatography-mass spectrometry (LC-MS) combined with Compound Discoverer. Purification was carried out using a customized separation method. The structure was confirmed using nuclear magnetic resonance (NMR) spectroscopy. The MED, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) were determined by two enhanced antibacterial assays. RESULTS The main antibacterial compound identified was flavone. A TLC-bioautography-based antibacterial assay and a colorimetric broth microdilution assisted by HPLC were described as the enhanced antibacterial assay protocols. The MED, MIC, and MBC of flavone against S. aureus were found to be 4.2-5.2 μg/cm2, 225-275 μg/mL, and 550-650 μg/mL, respectively. Similarly, the MED, MIC, and MBC against Escherichia coli were determined to be 5.2-6.1 μg/cm2, 325-375 μg/mL, and 375-425 μg/mL, respectively. CONCLUSION This study proposed an enhanced bioassay-guided separation technique for the isolation of antibacterial compounds from plants, along with two improved methods for assessing the antibacterial efficacy of insoluble or colored compounds.
Collapse
Affiliation(s)
- Wenliang Xu
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Danxia Shi
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Kuanmin Chen
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - David G Popovich
- School of Science, Engineering & Technology, RMIT Vietnam, Ho Chi Minh, Vietnam
| |
Collapse
|
4
|
Rauwel E, Arya G, Praakle K, Rauwel P. Use of Aloe Vera Gel as Media to Assess Antimicrobial Activity and Development of Antimicrobial Nanocomposites. Int J Mol Sci 2024; 25:5599. [PMID: 38891787 PMCID: PMC11171552 DOI: 10.3390/ijms25115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Antimicrobial resistance is a menace to public health on a global scale. In this regard, nanomaterials exhibiting antimicrobial properties represent a promising solution. Both metal and metal oxide nanomaterials are suitable candidates, even though their mechanisms of action vary. Multiple antimicrobial mechanisms can occur simultaneously or independently; this includes either direct contact with the pathogens, nanomaterial uptake, oxidative stress, ion release, or any of their combinations. However, due to their specific properties and more particularly fast settling, existing methods to study the antimicrobial properties of nanoparticles have not been specifically adapted in some cases. The development of methodologies that can assess the antimicrobial properties of metallic nanomaterials accurately is necessary. A cost-effective methodology with a straightforward set-up that enables the easy and quick assessment of the antimicrobial properties of metal nanoparticles with high accuracy has been developed. The methodology is also capable of confirming whether the killing mechanism involves ionic diffusion. Finally, Aloe Vera gel showed good properties for use as a medium for the development of antimicrobial ointment.
Collapse
Affiliation(s)
- Erwan Rauwel
- Institute of Veterinary Medicine & Animal Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia;
- Institute of Forestry and Engineering, Kreutzwaldi 56/1, 51006 Tartu, Estonia; (G.A.); (P.R.)
| | - Geeta Arya
- Institute of Forestry and Engineering, Kreutzwaldi 56/1, 51006 Tartu, Estonia; (G.A.); (P.R.)
| | - Kristi Praakle
- Institute of Veterinary Medicine & Animal Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia;
| | - Protima Rauwel
- Institute of Forestry and Engineering, Kreutzwaldi 56/1, 51006 Tartu, Estonia; (G.A.); (P.R.)
| |
Collapse
|
5
|
Xu W, Shi D, Chen K, Popovich DG. TLC-Bioautography-Guided Isolation and Assessment of Antibacterial Compounds from Manuka ( Leptospermum scoparium) Leaf and Branch Extracts. Molecules 2024; 29:717. [PMID: 38338460 PMCID: PMC10856334 DOI: 10.3390/molecules29030717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
A rapid procedure for the targeted isolation of antibacterial compounds from Manuka (Leptospermum scoparium) leaf and branch extracts was described in this paper. Antibacterial compounds from three different Manuka samples collected from New Zealand and China were compared. The active compounds were targeted by TLC-bioautography against S. aureus and were identified by HR-ESI-MS, and -MS/MS analysis in conjunction with Compound Discoverer 3.3. The major antibacterial component, grandiflorone, was identified, along with 20 β-triketones, flavonoids, and phloroglucinol derivatives. To verify the software identification, grandiflorone underwent purification via column chromatography, and its structure was elucidated through NMR analysis, ultimately confirming its identity as grandiflorone. This study successfully demonstrated that the leaves and branches remaining after Manuka essential oil distillation serve as excellent source for extracting grandiflorone. Additionally, we proposed an improved TLC-bioautography protocol for evaluating the antibacterial efficacy on solid surfaces, which is suitable for both S. aureus and E. coli. The minimum effective dose (MED) of grandiflorone was observed to be 0.29-0.59 μg/cm2 against S. aureus and 2.34-4.68 μg/cm2 against E. coli, respectively. Furthermore, the synthetic plant growth retardant, paclobutrazol, was isolated from the samples obtained in China. It is hypothesized that this compound may disrupt the synthesis pathway of triketones, consequently diminishing the antibacterial efficacy of Chinese Manuka extract in comparison to that of New Zealand.
Collapse
Affiliation(s)
- Wenliang Xu
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand; (W.X.); (D.S.); (K.C.)
| | - Danxia Shi
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand; (W.X.); (D.S.); (K.C.)
| | - Kuanmin Chen
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand; (W.X.); (D.S.); (K.C.)
| | - David G. Popovich
- School of Science, Engineering & Technology, RMIT, Ho Chi Minh City 800010, Vietnam
| |
Collapse
|
6
|
Nuanjohn T, Suphrom N, Nakaew N, Pathom-Aree W, Pensupa N, Siangsuepchart A, Dell B, Jumpathong J. Actinomycins from Soil-Inhabiting Streptomyces as Sources of Antibacterial Pigments for Silk Dyeing. Molecules 2023; 28:5949. [PMID: 37630201 PMCID: PMC10459128 DOI: 10.3390/molecules28165949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Actinobacteria produce a broad spectrum of bioactive substances that are used in the pharmaceutical, agricultural, and biotechnology industries. This study investigates the production of bioactive substances in Streptomyces, isolated from soil under five tropical plants, focusing on their potential as natural antibacterial dyes for silk fabrics. Out of 194 isolates, 44 produced pigments on broken rice as a solid substrate culture. Eight antibacterial pigmented isolates from under Magnolia baillonii (TBRC 15924, TBRC 15927, TBRC 15931), Magnolia rajaniana (TBRC 15925, TBRC 15926, TBRC 15928, TBRC 15930), and Cinnamomum parthenoxylon (TBRC 15929) were studied in more detail. TBRC 15927 was the only isolate where all the crude extracts inhibited the growth of the test organisms, Staphylococcus epidermidis TISTR 518 and S. aureus DMST 4745. The bioactive compounds present in TBRC 15927 were identified through LC-MS/MS analysis as belonging to the actinomycin group, actinomycin D (or X1), X2, and X0β. Also, the ethyl acetate crude extract exhibited non-toxicity at an IC50 value of 0.029 ± 0.008 µg/mL on the mouse fibroblast L-929 assay. From the 16S rRNA gene sequence analysis, TBRC 15927 had 100% identity with Streptomyces gramineus JR-43T. Raw silk dyed with the positive antimicrobial TBRC 15927 extract (8.35 mg/mL) had significant (>99.99%) antibacterial properties. Streptomyces gramineus TBRC 15927 is the first actinomycin-producing strain reported to grow on broken rice and shows promise for antibacterial silk dyeing.
Collapse
Affiliation(s)
- Tananya Nuanjohn
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Nareeluk Nakaew
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wasu Pathom-Aree
- Research Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattha Pensupa
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Apiradee Siangsuepchart
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Phrae 54140, Thailand
| | - Bernard Dell
- School of Agricultural Sciences, Murdoch University, Perth 6150, Australia
| | - Juangjun Jumpathong
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
7
|
Chung D, Nguyen HT, Yu NH, Yu WJ, Kwon YM, Bae SS, Choi G, Kim JC. In vitro and in vivo antimicrobial activity of the fungal metabolite toluquinol against phytopathogenic bacteria. Front Microbiol 2023; 14:1221865. [PMID: 37583517 PMCID: PMC10424571 DOI: 10.3389/fmicb.2023.1221865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Bacterial plant diseases cause tremendous economic losses worldwide. However, a few effective and sustainable control methods are currently available. To discover novel and effective management approaches, we screened marine fungi for their antibacterial activity against phytopathogenic bacteria in vitro and in vivo. Methods We screened the culture broth of 55 fungal strains isolated from various marine sources (seawater, algae, and sediment) for their in vitro antibacterial activity using the broth microdilution method. Then, only the fungal strain (designated UL-Ce9) with higher antibacterial activity in vitro was tested in an in vivo experiment against tomato bacterial wilt. The active compounds of UL-Ce9 were extracted using ethyl acetate, purified by a series of chromatography, and the structure was elucidated by nuclear magnetic resonance spectroscopy. Pesticide formulations of toluquinol were prepared as soluble concentrates and wettable powder. The disease control efficacy of toluquinol formulations was evaluated against blight of rice and the bacterial wilt of tomato. Results and discussion The culture broth of UL-Ce9 showed high antibacterial activity against Agrobacterium tumefaciens, Ralstonia solanacearum, and Xanthomonas arboricola pv. pruni in vitro, and we selected UL-Ce9 for the in vivo test. The UL-Ce9 culture broth completely suppressed the bacterial wilt of tomato at a dilution of 1:5. The phylogenetic analysis identified UL-Ce9 as Penicillium griseofulvum, and the antibacterial metabolites were revealed as patulin, gentisyl alcohol, and toluquinol, all of which were associated with the biosynthetic pathway of the mycotoxin patulin. Patulin exhibited the highest antibacterial activity against 16 phytopathogenic bacteria in vitro, followed by toluquinol and gentisyl alcohol. As patulin is toxic, we selected toluquinol to investigate its potential use as a pesticide against bacterial plant diseases. Compared with the chemicals currently being applied in agriculture (streptomycin and oxytetracycline), toluquinol formulations exhibited similar and higher control efficacies against bacterial leaf blight of rice and bacterial wilt of tomato, respectively. To the best of our knowledge, this is the first report of the antibacterial activity of toluquinol against phytopathogenic bacteria. Our results suggest that toluquinol is a potential candidate for the development of novel and effective pesticides for the management of bacterial plant diseases.
Collapse
Affiliation(s)
- Dawoon Chung
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Hoa Thi Nguyen
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
- Center of Organic Biochemistry, Vietnam Institute of Industrial Chemistry, Ha Noi, Vietnam
| | - Nan Hee Yu
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| | - Woon-Jong Yu
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Yong Min Kwon
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Seung Seob Bae
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Grace Choi
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Jin-Cheol Kim
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Noman ZA, Anika TT, Sachi S, Ferdous J, Sarker YA, Sabur MA, Rahman MT, Sikder MH. Evaluation of antibacterial efficacy of garlic ( Allium sativum) and ginger ( Zingiber officinale) crude extract against multidrug-resistant (MDR) poultry pathogen. J Adv Vet Anim Res 2023; 10:151-156. [PMID: 37534079 PMCID: PMC10390675 DOI: 10.5455/javar.2023.j664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 08/04/2023] Open
Abstract
Objective The study is aimed to understand the antibacterial sensitivity of native and Indian varieties of garlic (Allium sativum) and ginger (Zingiber officinale) crude extracts against multidrug-resistant (MDR) poultry pathogen (Escherichia coli and Salmonella sp.). Materials and Methods Thin layer chromatography (TLC) is used to identify the target spices' bioactive antibacterial compounds. MDR E. coli and Salmonella sp. were isolated from poultry. The TLC-Bioautography technique was applied to explore the antibacterial potentiality of garlic and ginger. Results Inhibitory activities of garlic were Zone of inhibition (ZI) = 14.03 ± 0.15 mm and 19.70 ± 0.36 mm, Minimum inhibitory concentration (MIC): 0.625 and 0.325 mg/ml, and ginger were ZI = 14.63 ± 0.30 mm and 11.56 ± 0.51mm, MIC: 9.0 mg/ml against E. coli and Salmonella sp., respectively. Two bands of garlic (Rf value = 0.31 and 0.50) and one band of ginger (Rf value = 0.71) showed inhibitory potential in TLC-Bioautography against both MDR isolates. Conclusion Garlic and ginger were effective against MDR E. coli and Salmonella sp. These spices could be a suitable alternative during the antibiotic void.
Collapse
Affiliation(s)
- Zakaria Al Noman
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tasnia Tabassum Anika
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sabbya Sachi
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Yousuf Ali Sarker
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Abdus Sabur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
9
|
Nagar S, Pigott M, Kukula-Koch W, Sheridan H. Unravelling Novel Phytochemicals and Anticholinesterase Activity in Irish Cladonia portentosa. Molecules 2023; 28:molecules28104145. [PMID: 37241886 DOI: 10.3390/molecules28104145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Acetylcholinesterase inhibitors remain the mainstay of symptomatic treatment for Alzheimer's disease. The natural world is rich in acetylcholinesterase inhibitory molecules, and research efforts to identify novel leads is ongoing. Cladonia portentosa, commonly known as reindeer lichen, is an abundant lichen species found in Irish Boglands. The methanol extract of Irish C. portentosa was identified as an acetylcholinesterase inhibitory lead using qualitative TLC-bioautography in a screening program. To identify the active components, the extract was deconvoluted using a successive extraction process with hexane, ethyl acetate and methanol to isolate the active fraction. The hexane extract demonstrated the highest inhibitory activity and was selected for further phytochemical investigations. Olivetolic acid, 4-O-methylolivetolcarboxylic acid, perlatolic acid and usnic acid were isolated and characterized using ESI-MS and two-dimensional NMR techniques. LC-MS analysis also determined the presence of the additional usnic acid derivatives, placodiolic and pseudoplacodiolic acids. Assays of the isolated components confirmed that the observed anticholinesterase activity of C. portentosa can be attributed to usnic acid (25% inhibition at 125 µM) and perlatolic acid (20% inhibition at 250 µM), which were both reported inhibitors. This is the first report of isolation of olivetolic and 4-O-methylolivetolcarboxylic acids and the identification of placodiolic and pseudoplacodiolic acids from C. portentosa.
Collapse
Affiliation(s)
- Shipra Nagar
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 02, D02 PN40 Dublin, Ireland
| | - Maria Pigott
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 02, D02 PN40 Dublin, Ireland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Helen Sheridan
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 02, D02 PN40 Dublin, Ireland
| |
Collapse
|
10
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Lo MM, Benfodda Z, Dunyach-Rémy C, Bénimélis D, Roulard R, Fontaine JX, Mathiron D, Quéro A, Molinié R, Meffre P. Isolation and Identification of Flavones Responsible for the Antibacterial Activities of Tillandsia bergeri Extracts. ACS OMEGA 2022; 7:35851-35862. [PMID: 36249367 PMCID: PMC9557886 DOI: 10.1021/acsomega.2c04195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Plants are an everlasting inspiration source of biologically active compounds. Among these medicinal plants, the biological activity of extracts from some species of the Tillandsia genus has been studied, but the phytochemistry of the hardy species Tillandsia bergeri remains unknown. The aim of the present study was to perform the first phytochemical study of T. bergeri and to identify the compounds responsible for the antibacterial activity of T. bergeri extracts. Soxhlet extraction of predried and grinded leaves was first performed using four increasing polarity solvents. A bio-guided fractionation was performed using agar overlay bioautography as a screening method against 12 Gram-positive, Gram-negative, sensitive, and resistant bacterial strains. The results showed the inhibition of Gram-positive methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA), methicillin-resistant S. aureus N-SARM-1 (MRSA), and Staphylococcus caprae ATCC 35538 by the dichloromethane fraction. A phytochemical investigation led to the isolation and identification by high-resolution mass spectrometry and nuclear magnetic resonance of the two flavones penduletin and viscosine, responsible for this antibacterial activity. For viscosine, the minimum inhibitory concentration (MIC) value is equal to 128 μg/mL against MSSA and is equal to 256 μg/mL against MRSA and S. caprae. The combination of these compounds with vancomycin and cloxacillin showed a decrease in MICs of the antibiotics. Penduletin showed synergistic activity when combined with vancomycin against MSSA (FICI < 0.258) and S. caprae (FICI < 0.5). Thus, unexplored Tillandsia species may represent a valuable source for potential antibiotics and adjuvants.
Collapse
Affiliation(s)
- Mame-Marietou Lo
- UNIV.
NIMES, UPR CHROME, 5
rue du Dr Georges Salan, F-30021 Nîmes Cedex 1, France
| | - Zohra Benfodda
- UNIV.
NIMES, UPR CHROME, 5
rue du Dr Georges Salan, F-30021 Nîmes Cedex 1, France
| | - Catherine Dunyach-Rémy
- Institut
National de la Santé et de la Recherche Médicale, U1047, Montpellier University, CHU de Nîmes, Place du Pr R. Debré, 30029 Nîmes, France
| | - David Bénimélis
- UNIV.
NIMES, UPR CHROME, 5
rue du Dr Georges Salan, F-30021 Nîmes Cedex 1, France
| | - Romain Roulard
- UMR
1158 Transfontalière BioEcoAgro, BIOlogie des Plantes et Innovation
(BIOPI), UPJV, Faculté de Pharmacie, 1 rue des Louvels, 80025 Amiens CEDEX, France
| | - Jean-Xavier Fontaine
- UMR
1158 Transfontalière BioEcoAgro, BIOlogie des Plantes et Innovation
(BIOPI), UPJV, Faculté de Pharmacie, 1 rue des Louvels, 80025 Amiens CEDEX, France
| | - David Mathiron
- Plateforme-Analytique, Université
de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France
| | - Anthony Quéro
- UMR
1158 Transfontalière BioEcoAgro, BIOlogie des Plantes et Innovation
(BIOPI), UPJV, Faculté de Pharmacie, 1 rue des Louvels, 80025 Amiens CEDEX, France
| | - Roland Molinié
- UMR
1158 Transfontalière BioEcoAgro, BIOlogie des Plantes et Innovation
(BIOPI), UPJV, Faculté de Pharmacie, 1 rue des Louvels, 80025 Amiens CEDEX, France
| | - Patrick Meffre
- UNIV.
NIMES, UPR CHROME, 5
rue du Dr Georges Salan, F-30021 Nîmes Cedex 1, France
| |
Collapse
|
12
|
Kowalska T, Sajewicz M. Thin-Layer Chromatography (TLC) in the Screening of Botanicals-Its Versatile Potential and Selected Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196607. [PMID: 36235143 PMCID: PMC9572063 DOI: 10.3390/molecules27196607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The aim of this paper is to present a comprehensive overview of the main aims and scopes in screening of botanicals, a task of which thin-layer chromatography (TLC) is, on an everyday basis, confronted with and engaged in. Stunning omnipresence of this modest analytical technique (both in its standard format (TLC) and the high-performance one (HPTLC), either hyphenated or not) for many analysts might at a first glance appear chaotic and random, with an auxiliary rather than leading role in research, and not capable of issuing meaningful final statements. Based on these reflections, our purpose is not to present a general review paper on TLC in screening of botanicals, but a blueprint rather (illustrated with a selection of practical examples), which highlights a sovereign and important role of TLC in accomplishing the following analytical tasks: (i) solving puzzles related to chemotaxonomy of plants, (ii) screening a wide spectrum of biological properties of plants, (iii) providing quality control of herbal medicines and alimentary and cosmetic products of biological origin, and (iv) tracing psychoactive plants under forensic surveillance.
Collapse
|
13
|
Antibacterial Activities of Monsonia Angustifolia and Momordica Balsamina Linn Extracts against Carbapenem-Resistant Acinetobacter Baumannii. PLANTS 2022; 11:plants11182374. [PMID: 36145776 PMCID: PMC9503486 DOI: 10.3390/plants11182374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Carbapenemase-producing Acinetobacter baumannii (A. baumannii) is resistant to most of the available antibiotics and poses serious therapeutic challenges. The study investigated Monsonia angustifolia (M. angustifolia) and Momordica balsamina Linn (M. balsamina Linn) extracts for antibacterial activity against a clinical isolate of carbapenemase-producing A. baumannii using the Kirby Bauer disc diffusion and TLC coupled with bioautography. MIC determination experiments were conducted on a molecularly characterized A. baumannii isolate identified using VITEK2. Positive PCR detection of blaOXA-51 and blaOXA-23 confirmed isolate identity and the presence of a carbapenemase-encoding gene. Antibacterial activity was observed with the methanolic extract of M. balsamina Linn with a MIC of 0.5 mg/mL. Compounds with Rf values of 0.05; 0.17; 0.39 obtained from M. angustifolia hexane extract; compounds with Rf values of 0.58; 0.78; 0.36; 0.48; 0.5; 0.56; 0.67; 0.9 obtained from M. angustifolia dichloromethane extract; compounds with Rf values of 0.11; 0.56; 0.24; 0.37 obtained from M. angustifolia acetone extract and compounds with Rf values of 0.11; 0.27 obtained from M. angustifolia methanol extract demonstrated a level of antibacterial activity. M. angustifolia and M. balsamina Linn plant extracts have a clinically significant antibacterial activity against a carbapenemase-producing A. baumannii strain.
Collapse
|
14
|
Câmara JS, Martins C, Pereira JAM, Perestrelo R, Rocha SM. Chromatographic-Based Platforms as New Avenues for Scientific Progress and Sustainability. Molecules 2022; 27:5267. [PMID: 36014506 PMCID: PMC9412595 DOI: 10.3390/molecules27165267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chromatography was born approximately one century ago and has undergone outstanding technological improvements in innovation, research, and development since then that has made it fundamental to advances in knowledge at different levels, with a relevant impact on the well-being and health of individuals. Chromatography boosted a comprehensive and deeper understanding of the complexity and diversity of human-environment interactions and systems, how these interactions affect our life, and the several societal challenges we are currently facing, namely those related to the sustainability of our planet and the future generations. From the life sciences, which allowed us to identify endogenous metabolites relevant to disease mechanisms, to the OMICS field, nanotechnology, clinical and forensic analysis, drug discovery, environment, and "foodprint", among others, the wide range of applications of today's chromatographic techniques is impressive. This is fueled by a great variability of powerful chromatographic instruments currently available, with very high sensitivity, resolution, and identification capacity, that provide a strong basis for an analytical platform able to support the challenging demands of the postgenomic and post COVID-19 eras. Within this context, this review aims to address the great utility of chromatography in helping to cope with several societal-based challenges, such as the characterization of disease and/or physiological status, and the response to current agri-food industry challenges of food safety and sustainability, or the monitoring of environmental contamination. These are increasingly important challenges considering the climate changes, the tons of food waste produced every day, and the exponential growth of the human population. In this context, the principles governing the separation mechanisms in chromatography as well the different types and chromatographic techniques will be described. In addition, the major achievements and the most important technological advances will be also highlighted. Finally, a set of studies was selected in order to evince the importance of different chromatographic analyses to understand processes or create fundamental information in the response to current societal challenges.
Collapse
Affiliation(s)
- José S. Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Cátia Martins
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A. M. Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Sílvia M. Rocha
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Barba-Ostria C, Carrera-Pacheco SE, Gonzalez-Pastor R, Heredia-Moya J, Mayorga-Ramos A, Rodríguez-Pólit C, Zúñiga-Miranda J, Arias-Almeida B, Guamán LP. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022; 27:4490. [PMID: 35889361 PMCID: PMC9324072 DOI: 10.3390/molecules27144490] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Natural compounds have diverse structures and are present in different forms of life. Metabolites such as tannins, anthocyanins, and alkaloids, among others, serve as a defense mechanism in live organisms and are undoubtedly compounds of interest for the food, cosmetic, and pharmaceutical industries. Plants, bacteria, and insects represent sources of biomolecules with diverse activities, which are in many cases poorly studied. To use these molecules for different applications, it is essential to know their structure, concentrations, and biological activity potential. In vitro techniques that evaluate the biological activity of the molecules of interest have been developed since the 1950s. Currently, different methodologies have emerged to overcome some of the limitations of these traditional techniques, mainly via reductions in time and costs. These emerging technologies continue to appear due to the urgent need to expand the analysis capacity of a growing number of reported biomolecules. This review presents an updated summary of the conventional and relevant methods to evaluate the natural compounds' biological activity in vitro.
Collapse
Affiliation(s)
- Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Benjamin Arias-Almeida
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| |
Collapse
|
16
|
Lim Ah Tock M, Combrinck S, Kamatou G, Chen W, Van Vuuren S, Viljoen A. Antibacterial Screening, Biochemometric and Bioautographic Evaluation of the Non-Volatile Bioactive Components of Three Indigenous South African Salvia Species. Antibiotics (Basel) 2022; 11:antibiotics11070901. [PMID: 35884155 PMCID: PMC9312202 DOI: 10.3390/antibiotics11070901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023] Open
Abstract
Salvia africana-lutea L., S. lanceolata L., and S. chamelaeagnea L. are used in South Africa as traditional medicines to treat infections. This paper describes an in-depth investigation into their antibacterial activities to identify bioactive compounds. Methanol extracts from 81 samples were screened against seven bacterial pathogens, using the microdilution assay. Biochemometric models were constructed using data derived from minimum inhibitory concentration (MIC) and ultra-performance liquid chromatography-mass spectrometry data. Active molecules in selected extracts were tentatively identified using high-performance thin layer chromatography (HPTLC), combined with bioautography, and finally, by analysis of active zone eluates by mass spectrometry (MS) via a dedicated interface. Salvia chamelaeagnea displayed notable activity towards all seven pathogens, and the activity, reflected by MICs, was superior to that of the other two species, as confirmed through ANOVA. Biochemometric models highlighted potentially bioactive compounds, including rosmanol methyl ether, epiisorosmanol methyl ether and carnosic acid. Bioautography assays revealed inhibition zones against A. baumannii, an increasingly multidrug-resistant pathogen. Mass spectral data of the eluted zones correlated to those revealed through biochemometric analysis. The study demonstrates the application of a biochemometric approach, bioautography, and direct MS analysis as useful tools for the rapid identification of bioactive constituents in plant extracts.
Collapse
Affiliation(s)
- Margaux Lim Ah Tock
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; (M.L.A.T.); (S.C.); (G.K.); (W.C.)
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; (M.L.A.T.); (S.C.); (G.K.); (W.C.)
| | - Guy Kamatou
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; (M.L.A.T.); (S.C.); (G.K.); (W.C.)
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; (M.L.A.T.); (S.C.); (G.K.); (W.C.)
| | - Sandy Van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa;
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; (M.L.A.T.); (S.C.); (G.K.); (W.C.)
- SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
- Correspondence:
| |
Collapse
|